Short-term storage of semen samples in acidic extender increases the proportion of females in pigs
Abstract Background Sex preselection is a desired goal of the animal industry to improve production efficiency, depending on industry demand. In the porcine industry, there is a general preference for pork from female and surgically castrated male pigs. Therefore, the birth of more females than male...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
BMC
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5d8a7cc5bd284a3e90045eb1c49494e0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Background Sex preselection is a desired goal of the animal industry to improve production efficiency, depending on industry demand. In the porcine industry, there is a general preference for pork from female and surgically castrated male pigs. Therefore, the birth of more females than males in a litter leads to economic benefits and improved animal welfare in the pig production industry. Our previous study suggested that the porcine semen extender (BTS) adjusted to pH 6.2 maximises the differences in viability between X-chromosome-bearing (X) spermatozoa and Y-chromosome-bearing (Y) spermatozoa without affecting sperm’s functional parameters. In this study we aimed to evaluate whether the pH 6.2 extender is applicable at the farm level for increasing the number of female piglets without a decline in spermatozoa fertility. Artificial insemination (AI) was carried out with spermatozoa stored at pH 6.2 and pH 7.2 (original BTS) at day 1 and day 2 of storage. Next, the functional parameters of the spermatozoa, litter size, farrowing rate, and female-to-male ratio of offspring were determined. Results Although sperm motility decreased significantly after 2 d of storage, the viability of spermatozoa was preserved at pH 6.2 for 3 d. There was no significant difference in the farrowing rate and average litter size between the group inseminated with the spermatozoa stored in (pH 7.2) and that inseminated with spermatozoa stored in acidic BTS. The percentage of female piglets was approximately 1.5-fold higher in sows inseminated on day 1 in the pH 6.2 than in the pH 7.2 group. Furthermore, although there was no significant difference in the female-to-male ratio, the percentage of female piglets born was slightly higher in the pH 6.2 group than in the pH 7.2 group on day 2. Conclusions The method optimised in our study is simple, economical, and may enhance the number of female births without any decline in spermatozoa fertility. |
---|