The METLIN small molecule dataset for machine learning-based retention time prediction
The use of machine learning for identifying small molecules through their retention time’s predictions has been challenging so far. Here the authors combine a large database of liquid chromatography retention time with a deep learning approach to enable accurate metabolites’s identification.
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5d98ceacccd144fe87ea451c880b8095 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | The use of machine learning for identifying small molecules through their retention time’s predictions has been challenging so far. Here the authors combine a large database of liquid chromatography retention time with a deep learning approach to enable accurate metabolites’s identification. |
---|