The METLIN small molecule dataset for machine learning-based retention time prediction

The use of machine learning for identifying small molecules through their retention time’s predictions has been challenging so far. Here the authors combine a large database of liquid chromatography retention time with a deep learning approach to enable accurate metabolites’s identification.

Guardado en:
Detalles Bibliográficos
Autores principales: Xavier Domingo-Almenara, Carlos Guijas, Elizabeth Billings, J. Rafael Montenegro-Burke, Winnie Uritboonthai, Aries E. Aisporna, Emily Chen, H. Paul Benton, Gary Siuzdak
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/5d98ceacccd144fe87ea451c880b8095
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The use of machine learning for identifying small molecules through their retention time’s predictions has been challenging so far. Here the authors combine a large database of liquid chromatography retention time with a deep learning approach to enable accurate metabolites’s identification.