The METLIN small molecule dataset for machine learning-based retention time prediction

The use of machine learning for identifying small molecules through their retention time’s predictions has been challenging so far. Here the authors combine a large database of liquid chromatography retention time with a deep learning approach to enable accurate metabolites’s identification.

Guardado en:
Detalles Bibliográficos
Autores principales: Xavier Domingo-Almenara, Carlos Guijas, Elizabeth Billings, J. Rafael Montenegro-Burke, Winnie Uritboonthai, Aries E. Aisporna, Emily Chen, H. Paul Benton, Gary Siuzdak
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/5d98ceacccd144fe87ea451c880b8095
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:5d98ceacccd144fe87ea451c880b8095
record_format dspace
spelling oai:doaj.org-article:5d98ceacccd144fe87ea451c880b80952021-12-02T13:27:31ZThe METLIN small molecule dataset for machine learning-based retention time prediction10.1038/s41467-019-13680-72041-1723https://doaj.org/article/5d98ceacccd144fe87ea451c880b80952019-12-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-13680-7https://doaj.org/toc/2041-1723The use of machine learning for identifying small molecules through their retention time’s predictions has been challenging so far. Here the authors combine a large database of liquid chromatography retention time with a deep learning approach to enable accurate metabolites’s identification.Xavier Domingo-AlmenaraCarlos GuijasElizabeth BillingsJ. Rafael Montenegro-BurkeWinnie UritboonthaiAries E. AispornaEmily ChenH. Paul BentonGary SiuzdakNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-9 (2019)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Xavier Domingo-Almenara
Carlos Guijas
Elizabeth Billings
J. Rafael Montenegro-Burke
Winnie Uritboonthai
Aries E. Aisporna
Emily Chen
H. Paul Benton
Gary Siuzdak
The METLIN small molecule dataset for machine learning-based retention time prediction
description The use of machine learning for identifying small molecules through their retention time’s predictions has been challenging so far. Here the authors combine a large database of liquid chromatography retention time with a deep learning approach to enable accurate metabolites’s identification.
format article
author Xavier Domingo-Almenara
Carlos Guijas
Elizabeth Billings
J. Rafael Montenegro-Burke
Winnie Uritboonthai
Aries E. Aisporna
Emily Chen
H. Paul Benton
Gary Siuzdak
author_facet Xavier Domingo-Almenara
Carlos Guijas
Elizabeth Billings
J. Rafael Montenegro-Burke
Winnie Uritboonthai
Aries E. Aisporna
Emily Chen
H. Paul Benton
Gary Siuzdak
author_sort Xavier Domingo-Almenara
title The METLIN small molecule dataset for machine learning-based retention time prediction
title_short The METLIN small molecule dataset for machine learning-based retention time prediction
title_full The METLIN small molecule dataset for machine learning-based retention time prediction
title_fullStr The METLIN small molecule dataset for machine learning-based retention time prediction
title_full_unstemmed The METLIN small molecule dataset for machine learning-based retention time prediction
title_sort metlin small molecule dataset for machine learning-based retention time prediction
publisher Nature Portfolio
publishDate 2019
url https://doaj.org/article/5d98ceacccd144fe87ea451c880b8095
work_keys_str_mv AT xavierdomingoalmenara themetlinsmallmoleculedatasetformachinelearningbasedretentiontimeprediction
AT carlosguijas themetlinsmallmoleculedatasetformachinelearningbasedretentiontimeprediction
AT elizabethbillings themetlinsmallmoleculedatasetformachinelearningbasedretentiontimeprediction
AT jrafaelmontenegroburke themetlinsmallmoleculedatasetformachinelearningbasedretentiontimeprediction
AT winnieuritboonthai themetlinsmallmoleculedatasetformachinelearningbasedretentiontimeprediction
AT arieseaisporna themetlinsmallmoleculedatasetformachinelearningbasedretentiontimeprediction
AT emilychen themetlinsmallmoleculedatasetformachinelearningbasedretentiontimeprediction
AT hpaulbenton themetlinsmallmoleculedatasetformachinelearningbasedretentiontimeprediction
AT garysiuzdak themetlinsmallmoleculedatasetformachinelearningbasedretentiontimeprediction
AT xavierdomingoalmenara metlinsmallmoleculedatasetformachinelearningbasedretentiontimeprediction
AT carlosguijas metlinsmallmoleculedatasetformachinelearningbasedretentiontimeprediction
AT elizabethbillings metlinsmallmoleculedatasetformachinelearningbasedretentiontimeprediction
AT jrafaelmontenegroburke metlinsmallmoleculedatasetformachinelearningbasedretentiontimeprediction
AT winnieuritboonthai metlinsmallmoleculedatasetformachinelearningbasedretentiontimeprediction
AT arieseaisporna metlinsmallmoleculedatasetformachinelearningbasedretentiontimeprediction
AT emilychen metlinsmallmoleculedatasetformachinelearningbasedretentiontimeprediction
AT hpaulbenton metlinsmallmoleculedatasetformachinelearningbasedretentiontimeprediction
AT garysiuzdak metlinsmallmoleculedatasetformachinelearningbasedretentiontimeprediction
_version_ 1718392976742285312