The METLIN small molecule dataset for machine learning-based retention time prediction
The use of machine learning for identifying small molecules through their retention time’s predictions has been challenging so far. Here the authors combine a large database of liquid chromatography retention time with a deep learning approach to enable accurate metabolites’s identification.
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5d98ceacccd144fe87ea451c880b8095 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:5d98ceacccd144fe87ea451c880b8095 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:5d98ceacccd144fe87ea451c880b80952021-12-02T13:27:31ZThe METLIN small molecule dataset for machine learning-based retention time prediction10.1038/s41467-019-13680-72041-1723https://doaj.org/article/5d98ceacccd144fe87ea451c880b80952019-12-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-13680-7https://doaj.org/toc/2041-1723The use of machine learning for identifying small molecules through their retention time’s predictions has been challenging so far. Here the authors combine a large database of liquid chromatography retention time with a deep learning approach to enable accurate metabolites’s identification.Xavier Domingo-AlmenaraCarlos GuijasElizabeth BillingsJ. Rafael Montenegro-BurkeWinnie UritboonthaiAries E. AispornaEmily ChenH. Paul BentonGary SiuzdakNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-9 (2019) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Xavier Domingo-Almenara Carlos Guijas Elizabeth Billings J. Rafael Montenegro-Burke Winnie Uritboonthai Aries E. Aisporna Emily Chen H. Paul Benton Gary Siuzdak The METLIN small molecule dataset for machine learning-based retention time prediction |
description |
The use of machine learning for identifying small molecules through their retention time’s predictions has been challenging so far. Here the authors combine a large database of liquid chromatography retention time with a deep learning approach to enable accurate metabolites’s identification. |
format |
article |
author |
Xavier Domingo-Almenara Carlos Guijas Elizabeth Billings J. Rafael Montenegro-Burke Winnie Uritboonthai Aries E. Aisporna Emily Chen H. Paul Benton Gary Siuzdak |
author_facet |
Xavier Domingo-Almenara Carlos Guijas Elizabeth Billings J. Rafael Montenegro-Burke Winnie Uritboonthai Aries E. Aisporna Emily Chen H. Paul Benton Gary Siuzdak |
author_sort |
Xavier Domingo-Almenara |
title |
The METLIN small molecule dataset for machine learning-based retention time prediction |
title_short |
The METLIN small molecule dataset for machine learning-based retention time prediction |
title_full |
The METLIN small molecule dataset for machine learning-based retention time prediction |
title_fullStr |
The METLIN small molecule dataset for machine learning-based retention time prediction |
title_full_unstemmed |
The METLIN small molecule dataset for machine learning-based retention time prediction |
title_sort |
metlin small molecule dataset for machine learning-based retention time prediction |
publisher |
Nature Portfolio |
publishDate |
2019 |
url |
https://doaj.org/article/5d98ceacccd144fe87ea451c880b8095 |
work_keys_str_mv |
AT xavierdomingoalmenara themetlinsmallmoleculedatasetformachinelearningbasedretentiontimeprediction AT carlosguijas themetlinsmallmoleculedatasetformachinelearningbasedretentiontimeprediction AT elizabethbillings themetlinsmallmoleculedatasetformachinelearningbasedretentiontimeprediction AT jrafaelmontenegroburke themetlinsmallmoleculedatasetformachinelearningbasedretentiontimeprediction AT winnieuritboonthai themetlinsmallmoleculedatasetformachinelearningbasedretentiontimeprediction AT arieseaisporna themetlinsmallmoleculedatasetformachinelearningbasedretentiontimeprediction AT emilychen themetlinsmallmoleculedatasetformachinelearningbasedretentiontimeprediction AT hpaulbenton themetlinsmallmoleculedatasetformachinelearningbasedretentiontimeprediction AT garysiuzdak themetlinsmallmoleculedatasetformachinelearningbasedretentiontimeprediction AT xavierdomingoalmenara metlinsmallmoleculedatasetformachinelearningbasedretentiontimeprediction AT carlosguijas metlinsmallmoleculedatasetformachinelearningbasedretentiontimeprediction AT elizabethbillings metlinsmallmoleculedatasetformachinelearningbasedretentiontimeprediction AT jrafaelmontenegroburke metlinsmallmoleculedatasetformachinelearningbasedretentiontimeprediction AT winnieuritboonthai metlinsmallmoleculedatasetformachinelearningbasedretentiontimeprediction AT arieseaisporna metlinsmallmoleculedatasetformachinelearningbasedretentiontimeprediction AT emilychen metlinsmallmoleculedatasetformachinelearningbasedretentiontimeprediction AT hpaulbenton metlinsmallmoleculedatasetformachinelearningbasedretentiontimeprediction AT garysiuzdak metlinsmallmoleculedatasetformachinelearningbasedretentiontimeprediction |
_version_ |
1718392976742285312 |