The METLIN small molecule dataset for machine learning-based retention time prediction
The use of machine learning for identifying small molecules through their retention time’s predictions has been challenging so far. Here the authors combine a large database of liquid chromatography retention time with a deep learning approach to enable accurate metabolites’s identification.
Guardado en:
Autores principales: | Xavier Domingo-Almenara, Carlos Guijas, Elizabeth Billings, J. Rafael Montenegro-Burke, Winnie Uritboonthai, Aries E. Aisporna, Emily Chen, H. Paul Benton, Gary Siuzdak |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5d98ceacccd144fe87ea451c880b8095 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
INSTANCE – the Italian seismic dataset for machine learning
por: A. Michelini, et al.
Publicado: (2021) -
Industrial machine tool component surface defect dataset
por: Tobias Schlagenhauf, et al.
Publicado: (2021) -
Identifying the Machine Learning Techniques for Classification of Target Datasets
por: Abdul Ahad Abro, et al.
Publicado: (2020) -
Adhesion Molecules Involved in Stem Cell Niche Retention During Normal Haematopoiesis and in Acute Myeloid Leukaemia
por: Julien M. P. Grenier, et al.
Publicado: (2021) -
Phosphorus retention by granulated apatite: assessing maximum retention capacity, kinetics and retention processes
por: Laura Delgado-González, et al.
Publicado: (2021)