Experimental and Prediction Using Artificial Neural Network of Bed Porosity and Solid Holdup in Viscous 3-Phase Inverse Fluidization
In the present investigation, bed porosity and solid holdup in viscous three-phase inverse fluidized bed (TPIFB) are determined for aqueous solutions of carboxy methyl cellulose (CMC) system using polyethylene and polypropylene as a particles with low-density and diameter (5 mm) in a (9.2 cm) inne...
Guardado en:
Autor principal: | Amer A. Abdulrahman |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Al-Khwarizmi College of Engineering – University of Baghdad
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5dad9cbab9dd456598c302281b9cc04e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Experimental and Prediction Using Artificial Neural Network of Bed Porosity and Solid Holdup in Viscous 3-Phase Inverse Fluidization
por: Amer A. Abdulrahman
Publicado: (2016) -
Experimental Quantification of the Lateral Mixing of Binary Solids in Bubbling Fluidized Beds
por: Huanan Li, et al.
Publicado: (2021) -
Fluidized Bed Combustion and Gasification of Fossil and Renewable Slurry Fuels
por: Francesco Miccio, et al.
Publicado: (2021) -
Hybrid fuzzy-GMC control of gas-phase propylene copolymerization in fluidized bed reactors
por: Nazratul Fareha Salahuddin, et al.
Publicado: (2021) -
Optimization of oxy-fuel circulating fluidized bed combustion system with high oxygen concentration
por: Runjuan Kong, et al.
Publicado: (2022)