ROS-Responsive Chitosan Coated Magnetic Iron Oxide Nanoparticles as Potential Vehicles for Targeted Drug Delivery in Cancer Therapy

Srinivasan Ayyanaar,1 Chandrasekar Balachandran,2 Rangaswamy Chinnabba Bhaskar,3 Mookkandi Palsamy Kesavan,4 Shin Aoki,2,5 Ramachandran Palpandi Raja,6 Jegathalaprathaban Rajesh,7 Thomas J Webster,8 Gurusamy Rajagopal1 1PG and Research Department of Chemistry, Chikkanna Government Arts College, Tiru...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ayyanaar S, Balachandran C, Bhaskar RC, Kesavan MP, Aoki S, Raja RP, Rajesh J, Webster TJ, Rajagopal G
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2020
Materias:
Acceso en línea:https://doaj.org/article/5db7f8ca2071420b8d4cce0ea9f7abba
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:5db7f8ca2071420b8d4cce0ea9f7abba
record_format dspace
spelling oai:doaj.org-article:5db7f8ca2071420b8d4cce0ea9f7abba2021-12-02T09:14:37ZROS-Responsive Chitosan Coated Magnetic Iron Oxide Nanoparticles as Potential Vehicles for Targeted Drug Delivery in Cancer Therapy1178-2013https://doaj.org/article/5db7f8ca2071420b8d4cce0ea9f7abba2020-05-01T00:00:00Zhttps://www.dovepress.com/ros-responsive-chitosan-coated-magnetic-iron-oxide-nanoparticles-as-po-peer-reviewed-article-IJNhttps://doaj.org/toc/1178-2013Srinivasan Ayyanaar,1 Chandrasekar Balachandran,2 Rangaswamy Chinnabba Bhaskar,3 Mookkandi Palsamy Kesavan,4 Shin Aoki,2,5 Ramachandran Palpandi Raja,6 Jegathalaprathaban Rajesh,7 Thomas J Webster,8 Gurusamy Rajagopal1 1PG and Research Department of Chemistry, Chikkanna Government Arts College, Tiruppur 641 602, Tamilnadu, India; 2Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan; 3Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India; 4Department of Chemistry, Hajee Karutha Rowther Howdia College, Uthamapalayam 625 533, Tamil Nadu, India; 5Research Institute of Science and Technology, Tokyo University of Science, Noda 278-8510, Japan; 6Centre for Biotechnology, Anna University, Chennai 600 025, Tamil Nadu, India; 7Chemistry Research Centre, Mohamed Sathak Engineering College, Kilakarai 623 806, Tamil Nadu, India; 8Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USACorrespondence: Jegathalaprathaban Rajesh; Thomas J Webster Email mkuraji@gmail.com; th.webster@neu.eduBackground and Objective: Cancer cells accumulate high concentrations of reactive oxygen species as a result of their faster and uninhibited metabolic activity. Cancer chemotherapeutic agents release an excess of severe adverse reactions as a result of targeting normal cells. This demands an improvement in targeted drug-delivery systems to selectively discharge anticancer drugs in the vicinity of such highly metabolically and mitotically active cells.Materials and Methods: Here, magnetic nanoparticles were synthesized by a traditional co-precipitation technique. Fe3O4@OA-CS-5-FLU-NPs were synthesized by an easy and rapid in situ loading method. The proposed Fe3O4@OA-CS-5-FLU-NPs were productively prepared as well as characterized by various spectroscopic and microscopic studies.Results: The targeted drug release profile of the Fe3O4@OA-CS-5-FLU-NPs was studied in the presence of ROS including H2O2 and pH induction. The released product, Fe3O4@OA-CS-5-FLU-NP, exhibited desirable levels of cytotoxicity and demonstrated morphological changes and inhibition of colony formation for A549 and HeLa S3 cancer cells. The IC50 values at 24 hours were 12.9 and 23 μg/mL, respectively.Conclusion: In summary, results from the MTT assay, fluorescence staining as well as colony formation assays, revealed that the Fe3O4@OA-CS-5-FLU-NPs were active and safe for anticancer biomedical applications. In summary, the present investigation provides a powerful nanostructured based system for improved cancer theranostics that should be further studied.Keywords: magnetic iron oxide nanoparticles, oleic acid, chitosan, 5-fluorouracil, cytotoxicity, targeted drug deliveryAyyanaar SBalachandran CBhaskar RCKesavan MPAoki SRaja RPRajesh JWebster TJRajagopal GDove Medical Pressarticlemagnetic iron oxide nanoparticlesoleic acidchitosan5-fluorouracilcytotoxicitytargeted drug delivery.Medicine (General)R5-920ENInternational Journal of Nanomedicine, Vol Volume 15, Pp 3333-3346 (2020)
institution DOAJ
collection DOAJ
language EN
topic magnetic iron oxide nanoparticles
oleic acid
chitosan
5-fluorouracil
cytotoxicity
targeted drug delivery.
Medicine (General)
R5-920
spellingShingle magnetic iron oxide nanoparticles
oleic acid
chitosan
5-fluorouracil
cytotoxicity
targeted drug delivery.
Medicine (General)
R5-920
Ayyanaar S
Balachandran C
Bhaskar RC
Kesavan MP
Aoki S
Raja RP
Rajesh J
Webster TJ
Rajagopal G
ROS-Responsive Chitosan Coated Magnetic Iron Oxide Nanoparticles as Potential Vehicles for Targeted Drug Delivery in Cancer Therapy
description Srinivasan Ayyanaar,1 Chandrasekar Balachandran,2 Rangaswamy Chinnabba Bhaskar,3 Mookkandi Palsamy Kesavan,4 Shin Aoki,2,5 Ramachandran Palpandi Raja,6 Jegathalaprathaban Rajesh,7 Thomas J Webster,8 Gurusamy Rajagopal1 1PG and Research Department of Chemistry, Chikkanna Government Arts College, Tiruppur 641 602, Tamilnadu, India; 2Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan; 3Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India; 4Department of Chemistry, Hajee Karutha Rowther Howdia College, Uthamapalayam 625 533, Tamil Nadu, India; 5Research Institute of Science and Technology, Tokyo University of Science, Noda 278-8510, Japan; 6Centre for Biotechnology, Anna University, Chennai 600 025, Tamil Nadu, India; 7Chemistry Research Centre, Mohamed Sathak Engineering College, Kilakarai 623 806, Tamil Nadu, India; 8Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USACorrespondence: Jegathalaprathaban Rajesh; Thomas J Webster Email mkuraji@gmail.com; th.webster@neu.eduBackground and Objective: Cancer cells accumulate high concentrations of reactive oxygen species as a result of their faster and uninhibited metabolic activity. Cancer chemotherapeutic agents release an excess of severe adverse reactions as a result of targeting normal cells. This demands an improvement in targeted drug-delivery systems to selectively discharge anticancer drugs in the vicinity of such highly metabolically and mitotically active cells.Materials and Methods: Here, magnetic nanoparticles were synthesized by a traditional co-precipitation technique. Fe3O4@OA-CS-5-FLU-NPs were synthesized by an easy and rapid in situ loading method. The proposed Fe3O4@OA-CS-5-FLU-NPs were productively prepared as well as characterized by various spectroscopic and microscopic studies.Results: The targeted drug release profile of the Fe3O4@OA-CS-5-FLU-NPs was studied in the presence of ROS including H2O2 and pH induction. The released product, Fe3O4@OA-CS-5-FLU-NP, exhibited desirable levels of cytotoxicity and demonstrated morphological changes and inhibition of colony formation for A549 and HeLa S3 cancer cells. The IC50 values at 24 hours were 12.9 and 23 μg/mL, respectively.Conclusion: In summary, results from the MTT assay, fluorescence staining as well as colony formation assays, revealed that the Fe3O4@OA-CS-5-FLU-NPs were active and safe for anticancer biomedical applications. In summary, the present investigation provides a powerful nanostructured based system for improved cancer theranostics that should be further studied.Keywords: magnetic iron oxide nanoparticles, oleic acid, chitosan, 5-fluorouracil, cytotoxicity, targeted drug delivery
format article
author Ayyanaar S
Balachandran C
Bhaskar RC
Kesavan MP
Aoki S
Raja RP
Rajesh J
Webster TJ
Rajagopal G
author_facet Ayyanaar S
Balachandran C
Bhaskar RC
Kesavan MP
Aoki S
Raja RP
Rajesh J
Webster TJ
Rajagopal G
author_sort Ayyanaar S
title ROS-Responsive Chitosan Coated Magnetic Iron Oxide Nanoparticles as Potential Vehicles for Targeted Drug Delivery in Cancer Therapy
title_short ROS-Responsive Chitosan Coated Magnetic Iron Oxide Nanoparticles as Potential Vehicles for Targeted Drug Delivery in Cancer Therapy
title_full ROS-Responsive Chitosan Coated Magnetic Iron Oxide Nanoparticles as Potential Vehicles for Targeted Drug Delivery in Cancer Therapy
title_fullStr ROS-Responsive Chitosan Coated Magnetic Iron Oxide Nanoparticles as Potential Vehicles for Targeted Drug Delivery in Cancer Therapy
title_full_unstemmed ROS-Responsive Chitosan Coated Magnetic Iron Oxide Nanoparticles as Potential Vehicles for Targeted Drug Delivery in Cancer Therapy
title_sort ros-responsive chitosan coated magnetic iron oxide nanoparticles as potential vehicles for targeted drug delivery in cancer therapy
publisher Dove Medical Press
publishDate 2020
url https://doaj.org/article/5db7f8ca2071420b8d4cce0ea9f7abba
work_keys_str_mv AT ayyanaars rosresponsivechitosancoatedmagneticironoxidenanoparticlesaspotentialvehiclesfortargeteddrugdeliveryincancertherapy
AT balachandranc rosresponsivechitosancoatedmagneticironoxidenanoparticlesaspotentialvehiclesfortargeteddrugdeliveryincancertherapy
AT bhaskarrc rosresponsivechitosancoatedmagneticironoxidenanoparticlesaspotentialvehiclesfortargeteddrugdeliveryincancertherapy
AT kesavanmp rosresponsivechitosancoatedmagneticironoxidenanoparticlesaspotentialvehiclesfortargeteddrugdeliveryincancertherapy
AT aokis rosresponsivechitosancoatedmagneticironoxidenanoparticlesaspotentialvehiclesfortargeteddrugdeliveryincancertherapy
AT rajarp rosresponsivechitosancoatedmagneticironoxidenanoparticlesaspotentialvehiclesfortargeteddrugdeliveryincancertherapy
AT rajeshj rosresponsivechitosancoatedmagneticironoxidenanoparticlesaspotentialvehiclesfortargeteddrugdeliveryincancertherapy
AT webstertj rosresponsivechitosancoatedmagneticironoxidenanoparticlesaspotentialvehiclesfortargeteddrugdeliveryincancertherapy
AT rajagopalg rosresponsivechitosancoatedmagneticironoxidenanoparticlesaspotentialvehiclesfortargeteddrugdeliveryincancertherapy
_version_ 1718398186638278656