Pan-cancer proteogenomic investigations identify post-transcriptional kinase targets
Elmas et al. develop an algorithm, OPPTI, to identify overexpressed kinase proteins across 10 cancer types using global mass spectrometry proteomics data from over 1000 cases. They reveal that protein-level aberrations, which are sometimes not observed using genomics, represent cancer vulnerabilitie...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5dd05a2677074ae39b5bc5377823049c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:5dd05a2677074ae39b5bc5377823049c |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:5dd05a2677074ae39b5bc5377823049c2021-12-02T15:15:04ZPan-cancer proteogenomic investigations identify post-transcriptional kinase targets10.1038/s42003-021-02636-72399-3642https://doaj.org/article/5dd05a2677074ae39b5bc5377823049c2021-09-01T00:00:00Zhttps://doi.org/10.1038/s42003-021-02636-7https://doaj.org/toc/2399-3642Elmas et al. develop an algorithm, OPPTI, to identify overexpressed kinase proteins across 10 cancer types using global mass spectrometry proteomics data from over 1000 cases. They reveal that protein-level aberrations, which are sometimes not observed using genomics, represent cancer vulnerabilities that may be targeted in precision oncology.Abdulkadir ElmasSerena TharakanSuraj JaladankiMatthew D. GalskyTao LiuKuan-lin HuangNature PortfolioarticleBiology (General)QH301-705.5ENCommunications Biology, Vol 4, Iss 1, Pp 1-13 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Biology (General) QH301-705.5 |
spellingShingle |
Biology (General) QH301-705.5 Abdulkadir Elmas Serena Tharakan Suraj Jaladanki Matthew D. Galsky Tao Liu Kuan-lin Huang Pan-cancer proteogenomic investigations identify post-transcriptional kinase targets |
description |
Elmas et al. develop an algorithm, OPPTI, to identify overexpressed kinase proteins across 10 cancer types using global mass spectrometry proteomics data from over 1000 cases. They reveal that protein-level aberrations, which are sometimes not observed using genomics, represent cancer vulnerabilities that may be targeted in precision oncology. |
format |
article |
author |
Abdulkadir Elmas Serena Tharakan Suraj Jaladanki Matthew D. Galsky Tao Liu Kuan-lin Huang |
author_facet |
Abdulkadir Elmas Serena Tharakan Suraj Jaladanki Matthew D. Galsky Tao Liu Kuan-lin Huang |
author_sort |
Abdulkadir Elmas |
title |
Pan-cancer proteogenomic investigations identify post-transcriptional kinase targets |
title_short |
Pan-cancer proteogenomic investigations identify post-transcriptional kinase targets |
title_full |
Pan-cancer proteogenomic investigations identify post-transcriptional kinase targets |
title_fullStr |
Pan-cancer proteogenomic investigations identify post-transcriptional kinase targets |
title_full_unstemmed |
Pan-cancer proteogenomic investigations identify post-transcriptional kinase targets |
title_sort |
pan-cancer proteogenomic investigations identify post-transcriptional kinase targets |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/5dd05a2677074ae39b5bc5377823049c |
work_keys_str_mv |
AT abdulkadirelmas pancancerproteogenomicinvestigationsidentifyposttranscriptionalkinasetargets AT serenatharakan pancancerproteogenomicinvestigationsidentifyposttranscriptionalkinasetargets AT surajjaladanki pancancerproteogenomicinvestigationsidentifyposttranscriptionalkinasetargets AT matthewdgalsky pancancerproteogenomicinvestigationsidentifyposttranscriptionalkinasetargets AT taoliu pancancerproteogenomicinvestigationsidentifyposttranscriptionalkinasetargets AT kuanlinhuang pancancerproteogenomicinvestigationsidentifyposttranscriptionalkinasetargets |
_version_ |
1718387571100221440 |