Pan-cancer proteogenomic investigations identify post-transcriptional kinase targets
Elmas et al. develop an algorithm, OPPTI, to identify overexpressed kinase proteins across 10 cancer types using global mass spectrometry proteomics data from over 1000 cases. They reveal that protein-level aberrations, which are sometimes not observed using genomics, represent cancer vulnerabilitie...
Guardado en:
Autores principales: | Abdulkadir Elmas, Serena Tharakan, Suraj Jaladanki, Matthew D. Galsky, Tao Liu, Kuan-lin Huang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5dd05a2677074ae39b5bc5377823049c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Genetic dependency of Alzheimer’s disease-associated genes across cells and tissue types
por: Suraj K. Jaladanki, et al.
Publicado: (2021) -
Proteogenomic integration reveals therapeutic targets in breast cancer xenografts
por: Kuan-lin Huang, et al.
Publicado: (2017) -
Microscaled proteogenomic methods for precision oncology
por: Shankha Satpathy, et al.
Publicado: (2020) -
Proteogenomics and Hi-C reveal transcriptional dysregulation in high hyperdiploid childhood acute lymphoblastic leukemia
por: Minjun Yang, et al.
Publicado: (2019) -
Multi-layered proteogenomic analysis unravels cancer metastasis directed by MMP-2 and focal adhesion kinase signaling
por: Yumi Kwon, et al.
Publicado: (2021)