Individualized prediction of COVID-19 adverse outcomes with MLHO

Abstract The COVID-19 pandemic has devastated the world with health and economic wreckage. Precise estimates of adverse outcomes from COVID-19 could have led to better allocation of healthcare resources and more efficient targeted preventive measures, including insight into prioritizing how to best...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Hossein Estiri, Zachary H. Strasser, Shawn N. Murphy
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/5dd07065d53645818688df403ffe5ebf
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:5dd07065d53645818688df403ffe5ebf
record_format dspace
spelling oai:doaj.org-article:5dd07065d53645818688df403ffe5ebf2021-12-02T13:19:31ZIndividualized prediction of COVID-19 adverse outcomes with MLHO10.1038/s41598-021-84781-x2045-2322https://doaj.org/article/5dd07065d53645818688df403ffe5ebf2021-03-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-84781-xhttps://doaj.org/toc/2045-2322Abstract The COVID-19 pandemic has devastated the world with health and economic wreckage. Precise estimates of adverse outcomes from COVID-19 could have led to better allocation of healthcare resources and more efficient targeted preventive measures, including insight into prioritizing how to best distribute a vaccination. We developed MLHO (pronounced as melo), an end-to-end Machine Learning framework that leverages iterative feature and algorithm selection to predict Health Outcomes. MLHO implements iterative sequential representation mining, and feature and model selection, for predicting patient-level risk of hospitalization, ICU admission, need for mechanical ventilation, and death. It bases this prediction on data from patients’ past medical records (before their COVID-19 infection). MLHO’s architecture enables a parallel and outcome-oriented model calibration, in which different statistical learning algorithms and vectors of features are simultaneously tested to improve prediction of health outcomes. Using clinical and demographic data from a large cohort of over 13,000 COVID-19-positive patients, we modeled the four adverse outcomes utilizing about 600 features representing patients’ pre-COVID health records and demographics. The mean AUC ROC for mortality prediction was 0.91, while the prediction performance ranged between 0.80 and 0.81 for the ICU, hospitalization, and ventilation. We broadly describe the clusters of features that were utilized in modeling and their relative influence for predicting each outcome. Our results demonstrated that while demographic variables (namely age) are important predictors of adverse outcomes after a COVID-19 infection, the incorporation of the past clinical records are vital for a reliable prediction model. As the COVID-19 pandemic unfolds around the world, adaptable and interpretable machine learning frameworks (like MLHO) are crucial to improve our readiness for confronting the potential future waves of COVID-19, as well as other novel infectious diseases that may emerge.Hossein EstiriZachary H. StrasserShawn N. MurphyNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-9 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Hossein Estiri
Zachary H. Strasser
Shawn N. Murphy
Individualized prediction of COVID-19 adverse outcomes with MLHO
description Abstract The COVID-19 pandemic has devastated the world with health and economic wreckage. Precise estimates of adverse outcomes from COVID-19 could have led to better allocation of healthcare resources and more efficient targeted preventive measures, including insight into prioritizing how to best distribute a vaccination. We developed MLHO (pronounced as melo), an end-to-end Machine Learning framework that leverages iterative feature and algorithm selection to predict Health Outcomes. MLHO implements iterative sequential representation mining, and feature and model selection, for predicting patient-level risk of hospitalization, ICU admission, need for mechanical ventilation, and death. It bases this prediction on data from patients’ past medical records (before their COVID-19 infection). MLHO’s architecture enables a parallel and outcome-oriented model calibration, in which different statistical learning algorithms and vectors of features are simultaneously tested to improve prediction of health outcomes. Using clinical and demographic data from a large cohort of over 13,000 COVID-19-positive patients, we modeled the four adverse outcomes utilizing about 600 features representing patients’ pre-COVID health records and demographics. The mean AUC ROC for mortality prediction was 0.91, while the prediction performance ranged between 0.80 and 0.81 for the ICU, hospitalization, and ventilation. We broadly describe the clusters of features that were utilized in modeling and their relative influence for predicting each outcome. Our results demonstrated that while demographic variables (namely age) are important predictors of adverse outcomes after a COVID-19 infection, the incorporation of the past clinical records are vital for a reliable prediction model. As the COVID-19 pandemic unfolds around the world, adaptable and interpretable machine learning frameworks (like MLHO) are crucial to improve our readiness for confronting the potential future waves of COVID-19, as well as other novel infectious diseases that may emerge.
format article
author Hossein Estiri
Zachary H. Strasser
Shawn N. Murphy
author_facet Hossein Estiri
Zachary H. Strasser
Shawn N. Murphy
author_sort Hossein Estiri
title Individualized prediction of COVID-19 adverse outcomes with MLHO
title_short Individualized prediction of COVID-19 adverse outcomes with MLHO
title_full Individualized prediction of COVID-19 adverse outcomes with MLHO
title_fullStr Individualized prediction of COVID-19 adverse outcomes with MLHO
title_full_unstemmed Individualized prediction of COVID-19 adverse outcomes with MLHO
title_sort individualized prediction of covid-19 adverse outcomes with mlho
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/5dd07065d53645818688df403ffe5ebf
work_keys_str_mv AT hosseinestiri individualizedpredictionofcovid19adverseoutcomeswithmlho
AT zacharyhstrasser individualizedpredictionofcovid19adverseoutcomeswithmlho
AT shawnnmurphy individualizedpredictionofcovid19adverseoutcomeswithmlho
_version_ 1718393274326056960