A Novel <i>In Silico</i> Benchmarked Pipeline Capable of Complete Protein Analysis: A Possible Tool for Potential Drug Discovery
Current <i>in silico</i> proteomics require the trifecta analysis, namely, prediction, validation, and functional assessment of a modeled protein. The main drawback of this endeavor is the lack of a single protocol that utilizes a proper set of benchmarked open-source tools to predict a...
Enregistré dans:
Auteurs principaux: | D. D. B. D. Perera, K. Minoli L. Perera, Dinithi C. Peiris |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/5dd0874289dd4e2f8ac8e5d41d89ece3 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Multi-Target In Silico Prediction of Inhibitors for Mitogen-Activated Protein Kinase-Interacting Kinases
par: Amit Kumar Halder, et autres
Publié: (2021) -
Validation of the Antioxidant and Enzyme Inhibitory Potential of Selected Triterpenes Using In Vitro and In Silico Studies, and the Evaluation of Their ADMET Properties
par: Nilufar Z. Mamadalieva, et autres
Publié: (2021) -
Exploring the Potency of <i>Nigella sativa</i> Seed in Inhibiting SARS-CoV-2 Main Protease Using Molecular Docking and Molecular Dynamics Simulations
par: Ari Hardianto, et autres
Publié: (2021) -
HIV-1 Protease and Reverse Transcriptase Inhibitory Activities of <i>Curcuma aeruginosa</i> Roxb. Rhizome Extracts and the Phytochemical Profile Analysis: In Vitro and In Silico Screening
par: Chanin Sillapachaiyaporn, et autres
Publié: (2021) -
An Integrated Deep Learning and Molecular Dynamics Simulation-Based Screening Pipeline Identifies Inhibitors of a New Cancer Drug Target TIPE2
par: Haiping Zhang, et autres
Publié: (2021)