A Convolutional Autoencoder Topology for Classification in High-Dimensional Noisy Image Datasets
Deep convolutional neural networks have shown remarkable performance in the image classification domain. However, Deep Learning models are vulnerable to noise and redundant information encapsulated into the high-dimensional raw input images, leading to unstable and unreliable predictions. Autoencode...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5dd1ec8af35a4523a22dd4d2f89657f0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:5dd1ec8af35a4523a22dd4d2f89657f0 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:5dd1ec8af35a4523a22dd4d2f89657f02021-11-25T18:58:50ZA Convolutional Autoencoder Topology for Classification in High-Dimensional Noisy Image Datasets10.3390/s212277311424-8220https://doaj.org/article/5dd1ec8af35a4523a22dd4d2f89657f02021-11-01T00:00:00Zhttps://www.mdpi.com/1424-8220/21/22/7731https://doaj.org/toc/1424-8220Deep convolutional neural networks have shown remarkable performance in the image classification domain. However, Deep Learning models are vulnerable to noise and redundant information encapsulated into the high-dimensional raw input images, leading to unstable and unreliable predictions. Autoencoders constitute an unsupervised dimensionality reduction technique, proven to filter out noise and redundant information and create robust and stable feature representations. In this work, in order to resolve the problem of DL models’ vulnerability, we propose a convolutional autoencoder topological model for compressing and filtering out noise and redundant information from initial high dimensionality input images and then feeding this compressed output into convolutional neural networks. Our results reveal the efficiency of the proposed approach, leading to a significant performance improvement compared to Deep Learning models trained with the initial raw images.Emmanuel PintelasIoannis E. LivierisPanagiotis E. PintelasMDPI AGarticleconvolutional autoencodersdimensionality reductiondeep learningconvolutional neural networkscomputer visionimage classificationChemical technologyTP1-1185ENSensors, Vol 21, Iss 7731, p 7731 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
convolutional autoencoders dimensionality reduction deep learning convolutional neural networks computer vision image classification Chemical technology TP1-1185 |
spellingShingle |
convolutional autoencoders dimensionality reduction deep learning convolutional neural networks computer vision image classification Chemical technology TP1-1185 Emmanuel Pintelas Ioannis E. Livieris Panagiotis E. Pintelas A Convolutional Autoencoder Topology for Classification in High-Dimensional Noisy Image Datasets |
description |
Deep convolutional neural networks have shown remarkable performance in the image classification domain. However, Deep Learning models are vulnerable to noise and redundant information encapsulated into the high-dimensional raw input images, leading to unstable and unreliable predictions. Autoencoders constitute an unsupervised dimensionality reduction technique, proven to filter out noise and redundant information and create robust and stable feature representations. In this work, in order to resolve the problem of DL models’ vulnerability, we propose a convolutional autoencoder topological model for compressing and filtering out noise and redundant information from initial high dimensionality input images and then feeding this compressed output into convolutional neural networks. Our results reveal the efficiency of the proposed approach, leading to a significant performance improvement compared to Deep Learning models trained with the initial raw images. |
format |
article |
author |
Emmanuel Pintelas Ioannis E. Livieris Panagiotis E. Pintelas |
author_facet |
Emmanuel Pintelas Ioannis E. Livieris Panagiotis E. Pintelas |
author_sort |
Emmanuel Pintelas |
title |
A Convolutional Autoencoder Topology for Classification in High-Dimensional Noisy Image Datasets |
title_short |
A Convolutional Autoencoder Topology for Classification in High-Dimensional Noisy Image Datasets |
title_full |
A Convolutional Autoencoder Topology for Classification in High-Dimensional Noisy Image Datasets |
title_fullStr |
A Convolutional Autoencoder Topology for Classification in High-Dimensional Noisy Image Datasets |
title_full_unstemmed |
A Convolutional Autoencoder Topology for Classification in High-Dimensional Noisy Image Datasets |
title_sort |
convolutional autoencoder topology for classification in high-dimensional noisy image datasets |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/5dd1ec8af35a4523a22dd4d2f89657f0 |
work_keys_str_mv |
AT emmanuelpintelas aconvolutionalautoencodertopologyforclassificationinhighdimensionalnoisyimagedatasets AT ioanniselivieris aconvolutionalautoencodertopologyforclassificationinhighdimensionalnoisyimagedatasets AT panagiotisepintelas aconvolutionalautoencodertopologyforclassificationinhighdimensionalnoisyimagedatasets AT emmanuelpintelas convolutionalautoencodertopologyforclassificationinhighdimensionalnoisyimagedatasets AT ioanniselivieris convolutionalautoencodertopologyforclassificationinhighdimensionalnoisyimagedatasets AT panagiotisepintelas convolutionalautoencodertopologyforclassificationinhighdimensionalnoisyimagedatasets |
_version_ |
1718410464843530240 |