A Convolutional Autoencoder Topology for Classification in High-Dimensional Noisy Image Datasets

Deep convolutional neural networks have shown remarkable performance in the image classification domain. However, Deep Learning models are vulnerable to noise and redundant information encapsulated into the high-dimensional raw input images, leading to unstable and unreliable predictions. Autoencode...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Emmanuel Pintelas, Ioannis E. Livieris, Panagiotis E. Pintelas
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/5dd1ec8af35a4523a22dd4d2f89657f0
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:5dd1ec8af35a4523a22dd4d2f89657f0
record_format dspace
spelling oai:doaj.org-article:5dd1ec8af35a4523a22dd4d2f89657f02021-11-25T18:58:50ZA Convolutional Autoencoder Topology for Classification in High-Dimensional Noisy Image Datasets10.3390/s212277311424-8220https://doaj.org/article/5dd1ec8af35a4523a22dd4d2f89657f02021-11-01T00:00:00Zhttps://www.mdpi.com/1424-8220/21/22/7731https://doaj.org/toc/1424-8220Deep convolutional neural networks have shown remarkable performance in the image classification domain. However, Deep Learning models are vulnerable to noise and redundant information encapsulated into the high-dimensional raw input images, leading to unstable and unreliable predictions. Autoencoders constitute an unsupervised dimensionality reduction technique, proven to filter out noise and redundant information and create robust and stable feature representations. In this work, in order to resolve the problem of DL models’ vulnerability, we propose a convolutional autoencoder topological model for compressing and filtering out noise and redundant information from initial high dimensionality input images and then feeding this compressed output into convolutional neural networks. Our results reveal the efficiency of the proposed approach, leading to a significant performance improvement compared to Deep Learning models trained with the initial raw images.Emmanuel PintelasIoannis E. LivierisPanagiotis E. PintelasMDPI AGarticleconvolutional autoencodersdimensionality reductiondeep learningconvolutional neural networkscomputer visionimage classificationChemical technologyTP1-1185ENSensors, Vol 21, Iss 7731, p 7731 (2021)
institution DOAJ
collection DOAJ
language EN
topic convolutional autoencoders
dimensionality reduction
deep learning
convolutional neural networks
computer vision
image classification
Chemical technology
TP1-1185
spellingShingle convolutional autoencoders
dimensionality reduction
deep learning
convolutional neural networks
computer vision
image classification
Chemical technology
TP1-1185
Emmanuel Pintelas
Ioannis E. Livieris
Panagiotis E. Pintelas
A Convolutional Autoencoder Topology for Classification in High-Dimensional Noisy Image Datasets
description Deep convolutional neural networks have shown remarkable performance in the image classification domain. However, Deep Learning models are vulnerable to noise and redundant information encapsulated into the high-dimensional raw input images, leading to unstable and unreliable predictions. Autoencoders constitute an unsupervised dimensionality reduction technique, proven to filter out noise and redundant information and create robust and stable feature representations. In this work, in order to resolve the problem of DL models’ vulnerability, we propose a convolutional autoencoder topological model for compressing and filtering out noise and redundant information from initial high dimensionality input images and then feeding this compressed output into convolutional neural networks. Our results reveal the efficiency of the proposed approach, leading to a significant performance improvement compared to Deep Learning models trained with the initial raw images.
format article
author Emmanuel Pintelas
Ioannis E. Livieris
Panagiotis E. Pintelas
author_facet Emmanuel Pintelas
Ioannis E. Livieris
Panagiotis E. Pintelas
author_sort Emmanuel Pintelas
title A Convolutional Autoencoder Topology for Classification in High-Dimensional Noisy Image Datasets
title_short A Convolutional Autoencoder Topology for Classification in High-Dimensional Noisy Image Datasets
title_full A Convolutional Autoencoder Topology for Classification in High-Dimensional Noisy Image Datasets
title_fullStr A Convolutional Autoencoder Topology for Classification in High-Dimensional Noisy Image Datasets
title_full_unstemmed A Convolutional Autoencoder Topology for Classification in High-Dimensional Noisy Image Datasets
title_sort convolutional autoencoder topology for classification in high-dimensional noisy image datasets
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/5dd1ec8af35a4523a22dd4d2f89657f0
work_keys_str_mv AT emmanuelpintelas aconvolutionalautoencodertopologyforclassificationinhighdimensionalnoisyimagedatasets
AT ioanniselivieris aconvolutionalautoencodertopologyforclassificationinhighdimensionalnoisyimagedatasets
AT panagiotisepintelas aconvolutionalautoencodertopologyforclassificationinhighdimensionalnoisyimagedatasets
AT emmanuelpintelas convolutionalautoencodertopologyforclassificationinhighdimensionalnoisyimagedatasets
AT ioanniselivieris convolutionalautoencodertopologyforclassificationinhighdimensionalnoisyimagedatasets
AT panagiotisepintelas convolutionalautoencodertopologyforclassificationinhighdimensionalnoisyimagedatasets
_version_ 1718410464843530240