A Convolutional Autoencoder Topology for Classification in High-Dimensional Noisy Image Datasets
Deep convolutional neural networks have shown remarkable performance in the image classification domain. However, Deep Learning models are vulnerable to noise and redundant information encapsulated into the high-dimensional raw input images, leading to unstable and unreliable predictions. Autoencode...
Guardado en:
Autores principales: | Emmanuel Pintelas, Ioannis E. Livieris, Panagiotis E. Pintelas |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5dd1ec8af35a4523a22dd4d2f89657f0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Novel Lidar Signal Denoising Method Based on Convolutional Autoencoding Deep Learning Neural Network
por: Minghuan Hu, et al.
Publicado: (2021) -
Coupling Matrix Extraction of Microwave Filters by Using One-Dimensional Convolutional Autoencoders
por: Yongliang Zhang, et al.
Publicado: (2021) -
Circular convolution-based feature extraction algorithm for classification of high-dimensional datasets
por: Tajanpure Rupali, et al.
Publicado: (2021) -
Review of Image Classification Algorithms Based on Convolutional Neural Networks
por: Leiyu Chen, et al.
Publicado: (2021) -
Spectral-Spatial Offset Graph Convolutional Networks for Hyperspectral Image Classification
por: Minghua Zhang, et al.
Publicado: (2021)