A Cantilever Beam Problem with Small Deflections and Perturbed Boundary Data
The boundary value problem of a fourth-order beam equation u4=λfx,u,u′,u″,u′′′,0≤x≤1 is investigated. We formulate a nonclassical cantilever beam problem with perturbed ends. By determining appropriate values of λ and estimates for perturbation measurements on the boundary data, we establish an exis...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi Limited
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5dd5aecbcd784ad3890dcf5f4f4b1840 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:5dd5aecbcd784ad3890dcf5f4f4b1840 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:5dd5aecbcd784ad3890dcf5f4f4b18402021-11-22T01:09:29ZA Cantilever Beam Problem with Small Deflections and Perturbed Boundary Data2314-888810.1155/2021/9081623https://doaj.org/article/5dd5aecbcd784ad3890dcf5f4f4b18402021-01-01T00:00:00Zhttp://dx.doi.org/10.1155/2021/9081623https://doaj.org/toc/2314-8888The boundary value problem of a fourth-order beam equation u4=λfx,u,u′,u″,u′′′,0≤x≤1 is investigated. We formulate a nonclassical cantilever beam problem with perturbed ends. By determining appropriate values of λ and estimates for perturbation measurements on the boundary data, we establish an existence theorem for the problem under integral boundary conditions u0=u′0=∫01pxuxdx,u″1=u′′′1=∫01qxu″xdx, where p,q∈L10,1, and f is continuous on 0,1×0,∞×0,∞×−∞,0×−∞,0.Ammar KhanferLazhar BougoffaHindawi LimitedarticleMathematicsQA1-939ENJournal of Function Spaces, Vol 2021 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Mathematics QA1-939 |
spellingShingle |
Mathematics QA1-939 Ammar Khanfer Lazhar Bougoffa A Cantilever Beam Problem with Small Deflections and Perturbed Boundary Data |
description |
The boundary value problem of a fourth-order beam equation u4=λfx,u,u′,u″,u′′′,0≤x≤1 is investigated. We formulate a nonclassical cantilever beam problem with perturbed ends. By determining appropriate values of λ and estimates for perturbation measurements on the boundary data, we establish an existence theorem for the problem under integral boundary conditions u0=u′0=∫01pxuxdx,u″1=u′′′1=∫01qxu″xdx, where p,q∈L10,1, and f is continuous on 0,1×0,∞×0,∞×−∞,0×−∞,0. |
format |
article |
author |
Ammar Khanfer Lazhar Bougoffa |
author_facet |
Ammar Khanfer Lazhar Bougoffa |
author_sort |
Ammar Khanfer |
title |
A Cantilever Beam Problem with Small Deflections and Perturbed Boundary Data |
title_short |
A Cantilever Beam Problem with Small Deflections and Perturbed Boundary Data |
title_full |
A Cantilever Beam Problem with Small Deflections and Perturbed Boundary Data |
title_fullStr |
A Cantilever Beam Problem with Small Deflections and Perturbed Boundary Data |
title_full_unstemmed |
A Cantilever Beam Problem with Small Deflections and Perturbed Boundary Data |
title_sort |
cantilever beam problem with small deflections and perturbed boundary data |
publisher |
Hindawi Limited |
publishDate |
2021 |
url |
https://doaj.org/article/5dd5aecbcd784ad3890dcf5f4f4b1840 |
work_keys_str_mv |
AT ammarkhanfer acantileverbeamproblemwithsmalldeflectionsandperturbedboundarydata AT lazharbougoffa acantileverbeamproblemwithsmalldeflectionsandperturbedboundarydata AT ammarkhanfer cantileverbeamproblemwithsmalldeflectionsandperturbedboundarydata AT lazharbougoffa cantileverbeamproblemwithsmalldeflectionsandperturbedboundarydata |
_version_ |
1718418402646687744 |