A Cantilever Beam Problem with Small Deflections and Perturbed Boundary Data

The boundary value problem of a fourth-order beam equation u4=λfx,u,u′,u″,u′′′,0≤x≤1 is investigated. We formulate a nonclassical cantilever beam problem with perturbed ends. By determining appropriate values of λ and estimates for perturbation measurements on the boundary data, we establish an exis...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ammar Khanfer, Lazhar Bougoffa
Formato: article
Lenguaje:EN
Publicado: Hindawi Limited 2021
Materias:
Acceso en línea:https://doaj.org/article/5dd5aecbcd784ad3890dcf5f4f4b1840
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:5dd5aecbcd784ad3890dcf5f4f4b1840
record_format dspace
spelling oai:doaj.org-article:5dd5aecbcd784ad3890dcf5f4f4b18402021-11-22T01:09:29ZA Cantilever Beam Problem with Small Deflections and Perturbed Boundary Data2314-888810.1155/2021/9081623https://doaj.org/article/5dd5aecbcd784ad3890dcf5f4f4b18402021-01-01T00:00:00Zhttp://dx.doi.org/10.1155/2021/9081623https://doaj.org/toc/2314-8888The boundary value problem of a fourth-order beam equation u4=λfx,u,u′,u″,u′′′,0≤x≤1 is investigated. We formulate a nonclassical cantilever beam problem with perturbed ends. By determining appropriate values of λ and estimates for perturbation measurements on the boundary data, we establish an existence theorem for the problem under integral boundary conditions u0=u′0=∫01pxuxdx,u″1=u′′′1=∫01qxu″xdx, where p,q∈L10,1, and f is continuous on 0,1×0,∞×0,∞×−∞,0×−∞,0.Ammar KhanferLazhar BougoffaHindawi LimitedarticleMathematicsQA1-939ENJournal of Function Spaces, Vol 2021 (2021)
institution DOAJ
collection DOAJ
language EN
topic Mathematics
QA1-939
spellingShingle Mathematics
QA1-939
Ammar Khanfer
Lazhar Bougoffa
A Cantilever Beam Problem with Small Deflections and Perturbed Boundary Data
description The boundary value problem of a fourth-order beam equation u4=λfx,u,u′,u″,u′′′,0≤x≤1 is investigated. We formulate a nonclassical cantilever beam problem with perturbed ends. By determining appropriate values of λ and estimates for perturbation measurements on the boundary data, we establish an existence theorem for the problem under integral boundary conditions u0=u′0=∫01pxuxdx,u″1=u′′′1=∫01qxu″xdx, where p,q∈L10,1, and f is continuous on 0,1×0,∞×0,∞×−∞,0×−∞,0.
format article
author Ammar Khanfer
Lazhar Bougoffa
author_facet Ammar Khanfer
Lazhar Bougoffa
author_sort Ammar Khanfer
title A Cantilever Beam Problem with Small Deflections and Perturbed Boundary Data
title_short A Cantilever Beam Problem with Small Deflections and Perturbed Boundary Data
title_full A Cantilever Beam Problem with Small Deflections and Perturbed Boundary Data
title_fullStr A Cantilever Beam Problem with Small Deflections and Perturbed Boundary Data
title_full_unstemmed A Cantilever Beam Problem with Small Deflections and Perturbed Boundary Data
title_sort cantilever beam problem with small deflections and perturbed boundary data
publisher Hindawi Limited
publishDate 2021
url https://doaj.org/article/5dd5aecbcd784ad3890dcf5f4f4b1840
work_keys_str_mv AT ammarkhanfer acantileverbeamproblemwithsmalldeflectionsandperturbedboundarydata
AT lazharbougoffa acantileverbeamproblemwithsmalldeflectionsandperturbedboundarydata
AT ammarkhanfer cantileverbeamproblemwithsmalldeflectionsandperturbedboundarydata
AT lazharbougoffa cantileverbeamproblemwithsmalldeflectionsandperturbedboundarydata
_version_ 1718418402646687744