An Extragradient Method and Proximal Point Algorithm for Inverse Strongly Monotone Operators and Maximal Monotone Operators in Banach Spaces

<p>Abstract</p> <p>We introduce an iterative scheme for finding a common element of the solution set of a maximal monotone operator and the solution set of the variational inequality problem for an inverse strongly-monotone operator in a uniformly smooth and uniformly convex Banach...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Plubtieng Somyot, Sriprad Wanna
Formato: article
Lenguaje:EN
Publicado: SpringerOpen 2009
Materias:
Acceso en línea:https://doaj.org/article/5dde2ad233ac4e6d86fc75410ea8cd11
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:5dde2ad233ac4e6d86fc75410ea8cd11
record_format dspace
spelling oai:doaj.org-article:5dde2ad233ac4e6d86fc75410ea8cd112021-12-02T12:06:21ZAn Extragradient Method and Proximal Point Algorithm for Inverse Strongly Monotone Operators and Maximal Monotone Operators in Banach Spaces1687-18201687-1812https://doaj.org/article/5dde2ad233ac4e6d86fc75410ea8cd112009-01-01T00:00:00Zhttp://www.fixedpointtheoryandapplications.com/content/2009/591874https://doaj.org/toc/1687-1820https://doaj.org/toc/1687-1812<p>Abstract</p> <p>We introduce an iterative scheme for finding a common element of the solution set of a maximal monotone operator and the solution set of the variational inequality problem for an inverse strongly-monotone operator in a uniformly smooth and uniformly convex Banach space, and then we prove weak and strong convergence theorems by using the notion of generalized projection. The result presented in this paper extend and improve the corresponding results of Kamimura et al. (2004), and Iiduka and Takahashi (2008). Finally, we apply our convergence theorem to the convex minimization problem, the problem of finding a zero point of a maximal monotone operator and the complementary problem.</p>Plubtieng SomyotSriprad WannaSpringerOpenarticleApplied mathematics. Quantitative methodsT57-57.97AnalysisQA299.6-433ENFixed Point Theory and Applications, Vol 2009, Iss 1, p 591874 (2009)
institution DOAJ
collection DOAJ
language EN
topic Applied mathematics. Quantitative methods
T57-57.97
Analysis
QA299.6-433
spellingShingle Applied mathematics. Quantitative methods
T57-57.97
Analysis
QA299.6-433
Plubtieng Somyot
Sriprad Wanna
An Extragradient Method and Proximal Point Algorithm for Inverse Strongly Monotone Operators and Maximal Monotone Operators in Banach Spaces
description <p>Abstract</p> <p>We introduce an iterative scheme for finding a common element of the solution set of a maximal monotone operator and the solution set of the variational inequality problem for an inverse strongly-monotone operator in a uniformly smooth and uniformly convex Banach space, and then we prove weak and strong convergence theorems by using the notion of generalized projection. The result presented in this paper extend and improve the corresponding results of Kamimura et al. (2004), and Iiduka and Takahashi (2008). Finally, we apply our convergence theorem to the convex minimization problem, the problem of finding a zero point of a maximal monotone operator and the complementary problem.</p>
format article
author Plubtieng Somyot
Sriprad Wanna
author_facet Plubtieng Somyot
Sriprad Wanna
author_sort Plubtieng Somyot
title An Extragradient Method and Proximal Point Algorithm for Inverse Strongly Monotone Operators and Maximal Monotone Operators in Banach Spaces
title_short An Extragradient Method and Proximal Point Algorithm for Inverse Strongly Monotone Operators and Maximal Monotone Operators in Banach Spaces
title_full An Extragradient Method and Proximal Point Algorithm for Inverse Strongly Monotone Operators and Maximal Monotone Operators in Banach Spaces
title_fullStr An Extragradient Method and Proximal Point Algorithm for Inverse Strongly Monotone Operators and Maximal Monotone Operators in Banach Spaces
title_full_unstemmed An Extragradient Method and Proximal Point Algorithm for Inverse Strongly Monotone Operators and Maximal Monotone Operators in Banach Spaces
title_sort extragradient method and proximal point algorithm for inverse strongly monotone operators and maximal monotone operators in banach spaces
publisher SpringerOpen
publishDate 2009
url https://doaj.org/article/5dde2ad233ac4e6d86fc75410ea8cd11
work_keys_str_mv AT plubtiengsomyot anextragradientmethodandproximalpointalgorithmforinversestronglymonotoneoperatorsandmaximalmonotoneoperatorsinbanachspaces
AT sripradwanna anextragradientmethodandproximalpointalgorithmforinversestronglymonotoneoperatorsandmaximalmonotoneoperatorsinbanachspaces
AT plubtiengsomyot extragradientmethodandproximalpointalgorithmforinversestronglymonotoneoperatorsandmaximalmonotoneoperatorsinbanachspaces
AT sripradwanna extragradientmethodandproximalpointalgorithmforinversestronglymonotoneoperatorsandmaximalmonotoneoperatorsinbanachspaces
_version_ 1718394692385636352