Time-delayed mutual information of the phase as a measure of functional connectivity.

We propose a time-delayed mutual information of the phase for detecting nonlinear synchronization in electrophysiological data such as MEG. Palus already introduced the mutual information as a measure of synchronization. To obtain estimates on small data-sets as reliably as possible, we adopt the nu...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Andreas Wilmer, Marc de Lussanet, Markus Lappe
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2012
Materias:
R
Q
Acceso en línea:https://doaj.org/article/5de6861447e941119337e496cf5e821e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:5de6861447e941119337e496cf5e821e
record_format dspace
spelling oai:doaj.org-article:5de6861447e941119337e496cf5e821e2021-11-18T07:05:17ZTime-delayed mutual information of the phase as a measure of functional connectivity.1932-620310.1371/journal.pone.0044633https://doaj.org/article/5de6861447e941119337e496cf5e821e2012-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/23028571/pdf/?tool=EBIhttps://doaj.org/toc/1932-6203We propose a time-delayed mutual information of the phase for detecting nonlinear synchronization in electrophysiological data such as MEG. Palus already introduced the mutual information as a measure of synchronization. To obtain estimates on small data-sets as reliably as possible, we adopt the numerical implementation as proposed by Kraskov and colleagues. An embedding with a parametric time-delay allows a reconstruction of arbitrary nonstationary connective structures--so-called connectivity patterns--in a wide class of systems such as coupled oscillatory or even purely stochastic driven processes. By using this method we do not need to make any assumptions about coupling directions, delay times, temporal dynamics, nonlinearities or underlying mechanisms. For verifying and refining the methods we generate synthetic data-sets by a mutual amplitude coupled network of Rössler oscillators with an a-priori known connective structure. This network is modified in such a way, that the power-spectrum forms a 1/f power law, which is also observed in electrophysiological recordings. The functional connectivity measure is tested on robustness to additive uncorrelated noise and in discrimination of linear mixed input data. For the latter issue a suitable de-correlation technique is applied. Furthermore, the compatibility to inverse methods for a source reconstruction in MEG such as beamforming techniques is controlled by dedicated dipole simulations. Finally, the method is applied on an experimental MEG recording.Andreas WilmerMarc de LussanetMarkus LappePublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 7, Iss 9, p e44633 (2012)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Andreas Wilmer
Marc de Lussanet
Markus Lappe
Time-delayed mutual information of the phase as a measure of functional connectivity.
description We propose a time-delayed mutual information of the phase for detecting nonlinear synchronization in electrophysiological data such as MEG. Palus already introduced the mutual information as a measure of synchronization. To obtain estimates on small data-sets as reliably as possible, we adopt the numerical implementation as proposed by Kraskov and colleagues. An embedding with a parametric time-delay allows a reconstruction of arbitrary nonstationary connective structures--so-called connectivity patterns--in a wide class of systems such as coupled oscillatory or even purely stochastic driven processes. By using this method we do not need to make any assumptions about coupling directions, delay times, temporal dynamics, nonlinearities or underlying mechanisms. For verifying and refining the methods we generate synthetic data-sets by a mutual amplitude coupled network of Rössler oscillators with an a-priori known connective structure. This network is modified in such a way, that the power-spectrum forms a 1/f power law, which is also observed in electrophysiological recordings. The functional connectivity measure is tested on robustness to additive uncorrelated noise and in discrimination of linear mixed input data. For the latter issue a suitable de-correlation technique is applied. Furthermore, the compatibility to inverse methods for a source reconstruction in MEG such as beamforming techniques is controlled by dedicated dipole simulations. Finally, the method is applied on an experimental MEG recording.
format article
author Andreas Wilmer
Marc de Lussanet
Markus Lappe
author_facet Andreas Wilmer
Marc de Lussanet
Markus Lappe
author_sort Andreas Wilmer
title Time-delayed mutual information of the phase as a measure of functional connectivity.
title_short Time-delayed mutual information of the phase as a measure of functional connectivity.
title_full Time-delayed mutual information of the phase as a measure of functional connectivity.
title_fullStr Time-delayed mutual information of the phase as a measure of functional connectivity.
title_full_unstemmed Time-delayed mutual information of the phase as a measure of functional connectivity.
title_sort time-delayed mutual information of the phase as a measure of functional connectivity.
publisher Public Library of Science (PLoS)
publishDate 2012
url https://doaj.org/article/5de6861447e941119337e496cf5e821e
work_keys_str_mv AT andreaswilmer timedelayedmutualinformationofthephaseasameasureoffunctionalconnectivity
AT marcdelussanet timedelayedmutualinformationofthephaseasameasureoffunctionalconnectivity
AT markuslappe timedelayedmutualinformationofthephaseasameasureoffunctionalconnectivity
_version_ 1718423978795597824