A new model using routinely available clinical parameters to predict significant liver fibrosis in chronic hepatitis B.

<h4>Objective</h4>We developed a predictive model for significant fibrosis in chronic hepatitis B (CHB) based on routinely available clinical parameters.<h4>Methods</h4>237 treatment-naïve CHB patients [58.4% hepatitis B e antigen (HBeAg)-positive] who had undergone liver bio...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Wai-Kay Seto, Chun-Fan Lee, Ching-Lung Lai, Philip P C Ip, Daniel Yee-Tak Fong, James Fung, Danny Ka-Ho Wong, Man-Fung Yuen
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2011
Materias:
R
Q
Acceso en línea:https://doaj.org/article/5deadcdd05f44cffa148dc622cc39bfd
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:5deadcdd05f44cffa148dc622cc39bfd
record_format dspace
spelling oai:doaj.org-article:5deadcdd05f44cffa148dc622cc39bfd2021-11-18T06:48:12ZA new model using routinely available clinical parameters to predict significant liver fibrosis in chronic hepatitis B.1932-620310.1371/journal.pone.0023077https://doaj.org/article/5deadcdd05f44cffa148dc622cc39bfd2011-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/21853071/?tool=EBIhttps://doaj.org/toc/1932-6203<h4>Objective</h4>We developed a predictive model for significant fibrosis in chronic hepatitis B (CHB) based on routinely available clinical parameters.<h4>Methods</h4>237 treatment-naïve CHB patients [58.4% hepatitis B e antigen (HBeAg)-positive] who had undergone liver biopsy were randomly divided into two cohorts: training group (n = 108) and validation group (n = 129). Liver histology was assessed for fibrosis. All common demographics, viral serology, viral load and liver biochemistry were analyzed.<h4>Results</h4>Based on 12 available clinical parameters (age, sex, HBeAg status, HBV DNA, platelet, albumin, bilirubin, ALT, AST, ALP, GGT and AFP), a model to predict significant liver fibrosis (Ishak fibrosis score ≥3) was derived using the five best parameters (age, ALP, AST, AFP and platelet). Using the formula log(index+1) = 0.025+0.0031(age)+0.1483 log(ALP)+0.004 log(AST)+0.0908 log(AFP+1)-0.028 log(platelet), the PAPAS (Platelet/Age/Phosphatase/AFP/AST) index predicts significant fibrosis with an area under the receiving operating characteristics (AUROC) curve of 0.776 [0.797 for patients with ALT <2×upper limit of normal (ULN)] The negative predictive value to exclude significant fibrosis was 88.4%. This predictive power is superior to other non-invasive models using common parameters, including the AST/platelet/GGT/AFP (APGA) index, AST/platelet ratio index (APRI), and the FIB-4 index (AUROC of 0.757, 0.708 and 0.723 respectively). Using the PAPAS index, 67.5% of liver biopsies for patients being considered for treatment with ALT <2×ULN could be avoided.<h4>Conclusion</h4>The PAPAS index can predict and exclude significant fibrosis, and may reduce the need for liver biopsy in CHB patients.Wai-Kay SetoChun-Fan LeeChing-Lung LaiPhilip P C IpDaniel Yee-Tak FongJames FungDanny Ka-Ho WongMan-Fung YuenPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 6, Iss 8, p e23077 (2011)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Wai-Kay Seto
Chun-Fan Lee
Ching-Lung Lai
Philip P C Ip
Daniel Yee-Tak Fong
James Fung
Danny Ka-Ho Wong
Man-Fung Yuen
A new model using routinely available clinical parameters to predict significant liver fibrosis in chronic hepatitis B.
description <h4>Objective</h4>We developed a predictive model for significant fibrosis in chronic hepatitis B (CHB) based on routinely available clinical parameters.<h4>Methods</h4>237 treatment-naïve CHB patients [58.4% hepatitis B e antigen (HBeAg)-positive] who had undergone liver biopsy were randomly divided into two cohorts: training group (n = 108) and validation group (n = 129). Liver histology was assessed for fibrosis. All common demographics, viral serology, viral load and liver biochemistry were analyzed.<h4>Results</h4>Based on 12 available clinical parameters (age, sex, HBeAg status, HBV DNA, platelet, albumin, bilirubin, ALT, AST, ALP, GGT and AFP), a model to predict significant liver fibrosis (Ishak fibrosis score ≥3) was derived using the five best parameters (age, ALP, AST, AFP and platelet). Using the formula log(index+1) = 0.025+0.0031(age)+0.1483 log(ALP)+0.004 log(AST)+0.0908 log(AFP+1)-0.028 log(platelet), the PAPAS (Platelet/Age/Phosphatase/AFP/AST) index predicts significant fibrosis with an area under the receiving operating characteristics (AUROC) curve of 0.776 [0.797 for patients with ALT <2×upper limit of normal (ULN)] The negative predictive value to exclude significant fibrosis was 88.4%. This predictive power is superior to other non-invasive models using common parameters, including the AST/platelet/GGT/AFP (APGA) index, AST/platelet ratio index (APRI), and the FIB-4 index (AUROC of 0.757, 0.708 and 0.723 respectively). Using the PAPAS index, 67.5% of liver biopsies for patients being considered for treatment with ALT <2×ULN could be avoided.<h4>Conclusion</h4>The PAPAS index can predict and exclude significant fibrosis, and may reduce the need for liver biopsy in CHB patients.
format article
author Wai-Kay Seto
Chun-Fan Lee
Ching-Lung Lai
Philip P C Ip
Daniel Yee-Tak Fong
James Fung
Danny Ka-Ho Wong
Man-Fung Yuen
author_facet Wai-Kay Seto
Chun-Fan Lee
Ching-Lung Lai
Philip P C Ip
Daniel Yee-Tak Fong
James Fung
Danny Ka-Ho Wong
Man-Fung Yuen
author_sort Wai-Kay Seto
title A new model using routinely available clinical parameters to predict significant liver fibrosis in chronic hepatitis B.
title_short A new model using routinely available clinical parameters to predict significant liver fibrosis in chronic hepatitis B.
title_full A new model using routinely available clinical parameters to predict significant liver fibrosis in chronic hepatitis B.
title_fullStr A new model using routinely available clinical parameters to predict significant liver fibrosis in chronic hepatitis B.
title_full_unstemmed A new model using routinely available clinical parameters to predict significant liver fibrosis in chronic hepatitis B.
title_sort new model using routinely available clinical parameters to predict significant liver fibrosis in chronic hepatitis b.
publisher Public Library of Science (PLoS)
publishDate 2011
url https://doaj.org/article/5deadcdd05f44cffa148dc622cc39bfd
work_keys_str_mv AT waikayseto anewmodelusingroutinelyavailableclinicalparameterstopredictsignificantliverfibrosisinchronichepatitisb
AT chunfanlee anewmodelusingroutinelyavailableclinicalparameterstopredictsignificantliverfibrosisinchronichepatitisb
AT chinglunglai anewmodelusingroutinelyavailableclinicalparameterstopredictsignificantliverfibrosisinchronichepatitisb
AT philippcip anewmodelusingroutinelyavailableclinicalparameterstopredictsignificantliverfibrosisinchronichepatitisb
AT danielyeetakfong anewmodelusingroutinelyavailableclinicalparameterstopredictsignificantliverfibrosisinchronichepatitisb
AT jamesfung anewmodelusingroutinelyavailableclinicalparameterstopredictsignificantliverfibrosisinchronichepatitisb
AT dannykahowong anewmodelusingroutinelyavailableclinicalparameterstopredictsignificantliverfibrosisinchronichepatitisb
AT manfungyuen anewmodelusingroutinelyavailableclinicalparameterstopredictsignificantliverfibrosisinchronichepatitisb
AT waikayseto newmodelusingroutinelyavailableclinicalparameterstopredictsignificantliverfibrosisinchronichepatitisb
AT chunfanlee newmodelusingroutinelyavailableclinicalparameterstopredictsignificantliverfibrosisinchronichepatitisb
AT chinglunglai newmodelusingroutinelyavailableclinicalparameterstopredictsignificantliverfibrosisinchronichepatitisb
AT philippcip newmodelusingroutinelyavailableclinicalparameterstopredictsignificantliverfibrosisinchronichepatitisb
AT danielyeetakfong newmodelusingroutinelyavailableclinicalparameterstopredictsignificantliverfibrosisinchronichepatitisb
AT jamesfung newmodelusingroutinelyavailableclinicalparameterstopredictsignificantliverfibrosisinchronichepatitisb
AT dannykahowong newmodelusingroutinelyavailableclinicalparameterstopredictsignificantliverfibrosisinchronichepatitisb
AT manfungyuen newmodelusingroutinelyavailableclinicalparameterstopredictsignificantliverfibrosisinchronichepatitisb
_version_ 1718424353048100864