Sorting Five Human Tumor Types Reveals Specific Biomarkers and Background Classification Genes
Abstract We applied two state-of-the-art, knowledge independent data-mining methods – Dynamic Quantum Clustering (DQC) and t-Distributed Stochastic Neighbor Embedding (t-SNE) – to data from The Cancer Genome Atlas (TCGA). We showed that the RNA expression patterns for a mixture of 2,016 samples from...
Guardado en:
Autores principales: | Kimberly E. Roche, Marvin Weinstein, Leland J. Dunwoodie, William L. Poehlman, Frank A. Feltus |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5df7caa6fa724781984fe8b965d77763 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Discovering Condition-Specific Gene Co-Expression Patterns Using Gaussian Mixture Models: A Cancer Case Study
por: Stephen P. Ficklin, et al.
Publicado: (2017) -
Sorting and sort systems
por: Lorin, Harold -
Two-Stage Classification of Breast Tumor Biomarkers for Iraqi Women
por: Iyden Kamil Mohammed, et al.
Publicado: (2020) -
Sort injuste ?
por: Olivier Christin
Publicado: (2019) -
Repeat DNA-PAINT suppresses background and non-specific signals in optical nanoscopy
por: Alexander H. Clowsley, et al.
Publicado: (2021)