Riemann Hypothesis and Random Walks: The Zeta Case

In previous work, it was shown that if certain series based on sums over primes of non-principal Dirichlet characters have a conjectured random walk behavior, then the Euler product formula for its <i>L</i>-function is valid to the right of the critical line <inline-formula><mat...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: André LeClair
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/5e18b28a5dc940f18d2a12d3425e8e43
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:5e18b28a5dc940f18d2a12d3425e8e43
record_format dspace
spelling oai:doaj.org-article:5e18b28a5dc940f18d2a12d3425e8e432021-11-25T19:06:03ZRiemann Hypothesis and Random Walks: The Zeta Case10.3390/sym131120142073-8994https://doaj.org/article/5e18b28a5dc940f18d2a12d3425e8e432021-10-01T00:00:00Zhttps://www.mdpi.com/2073-8994/13/11/2014https://doaj.org/toc/2073-8994In previous work, it was shown that if certain series based on sums over primes of non-principal Dirichlet characters have a conjectured random walk behavior, then the Euler product formula for its <i>L</i>-function is valid to the right of the critical line <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>ℜ</mo><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow><mo>></mo><mstyle scriptlevel="0" displaystyle="false"><mfrac><mn>1</mn><mn>2</mn></mfrac></mstyle></mrow></semantics></math></inline-formula>, and the Riemann hypothesis for this class of <i>L</i>-functions follows. Building on this work, here we propose how to extend this line of reasoning to the Riemann zeta function and other principal Dirichlet <i>L</i>-functions. We apply these results to the study of the argument of the zeta function. In another application, we define and study a one-point correlation function of the Riemann zeros, which leads to the construction of a probabilistic model for them. Based on these results we describe a new algorithm for computing very high Riemann zeros, and we calculate the googol-th zero, namely <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>10</mn><mn>100</mn></msup></semantics></math></inline-formula>-th zero to over 100 digits, far beyond what is currently known. Of course, use is made of the symmetry of the zeta function about the critical line.André LeClairMDPI AGarticlezeta functionsprime numbersprobabilistic number theoryMathematicsQA1-939ENSymmetry, Vol 13, Iss 2014, p 2014 (2021)
institution DOAJ
collection DOAJ
language EN
topic zeta functions
prime numbers
probabilistic number theory
Mathematics
QA1-939
spellingShingle zeta functions
prime numbers
probabilistic number theory
Mathematics
QA1-939
André LeClair
Riemann Hypothesis and Random Walks: The Zeta Case
description In previous work, it was shown that if certain series based on sums over primes of non-principal Dirichlet characters have a conjectured random walk behavior, then the Euler product formula for its <i>L</i>-function is valid to the right of the critical line <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>ℜ</mo><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow><mo>></mo><mstyle scriptlevel="0" displaystyle="false"><mfrac><mn>1</mn><mn>2</mn></mfrac></mstyle></mrow></semantics></math></inline-formula>, and the Riemann hypothesis for this class of <i>L</i>-functions follows. Building on this work, here we propose how to extend this line of reasoning to the Riemann zeta function and other principal Dirichlet <i>L</i>-functions. We apply these results to the study of the argument of the zeta function. In another application, we define and study a one-point correlation function of the Riemann zeros, which leads to the construction of a probabilistic model for them. Based on these results we describe a new algorithm for computing very high Riemann zeros, and we calculate the googol-th zero, namely <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>10</mn><mn>100</mn></msup></semantics></math></inline-formula>-th zero to over 100 digits, far beyond what is currently known. Of course, use is made of the symmetry of the zeta function about the critical line.
format article
author André LeClair
author_facet André LeClair
author_sort André LeClair
title Riemann Hypothesis and Random Walks: The Zeta Case
title_short Riemann Hypothesis and Random Walks: The Zeta Case
title_full Riemann Hypothesis and Random Walks: The Zeta Case
title_fullStr Riemann Hypothesis and Random Walks: The Zeta Case
title_full_unstemmed Riemann Hypothesis and Random Walks: The Zeta Case
title_sort riemann hypothesis and random walks: the zeta case
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/5e18b28a5dc940f18d2a12d3425e8e43
work_keys_str_mv AT andreleclair riemannhypothesisandrandomwalksthezetacase
_version_ 1718410280259551232