Riemann Hypothesis and Random Walks: The Zeta Case
In previous work, it was shown that if certain series based on sums over primes of non-principal Dirichlet characters have a conjectured random walk behavior, then the Euler product formula for its <i>L</i>-function is valid to the right of the critical line <inline-formula><mat...
Guardado en:
Autor principal: | |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5e18b28a5dc940f18d2a12d3425e8e43 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:5e18b28a5dc940f18d2a12d3425e8e43 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:5e18b28a5dc940f18d2a12d3425e8e432021-11-25T19:06:03ZRiemann Hypothesis and Random Walks: The Zeta Case10.3390/sym131120142073-8994https://doaj.org/article/5e18b28a5dc940f18d2a12d3425e8e432021-10-01T00:00:00Zhttps://www.mdpi.com/2073-8994/13/11/2014https://doaj.org/toc/2073-8994In previous work, it was shown that if certain series based on sums over primes of non-principal Dirichlet characters have a conjectured random walk behavior, then the Euler product formula for its <i>L</i>-function is valid to the right of the critical line <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>ℜ</mo><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow><mo>></mo><mstyle scriptlevel="0" displaystyle="false"><mfrac><mn>1</mn><mn>2</mn></mfrac></mstyle></mrow></semantics></math></inline-formula>, and the Riemann hypothesis for this class of <i>L</i>-functions follows. Building on this work, here we propose how to extend this line of reasoning to the Riemann zeta function and other principal Dirichlet <i>L</i>-functions. We apply these results to the study of the argument of the zeta function. In another application, we define and study a one-point correlation function of the Riemann zeros, which leads to the construction of a probabilistic model for them. Based on these results we describe a new algorithm for computing very high Riemann zeros, and we calculate the googol-th zero, namely <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>10</mn><mn>100</mn></msup></semantics></math></inline-formula>-th zero to over 100 digits, far beyond what is currently known. Of course, use is made of the symmetry of the zeta function about the critical line.André LeClairMDPI AGarticlezeta functionsprime numbersprobabilistic number theoryMathematicsQA1-939ENSymmetry, Vol 13, Iss 2014, p 2014 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
zeta functions prime numbers probabilistic number theory Mathematics QA1-939 |
spellingShingle |
zeta functions prime numbers probabilistic number theory Mathematics QA1-939 André LeClair Riemann Hypothesis and Random Walks: The Zeta Case |
description |
In previous work, it was shown that if certain series based on sums over primes of non-principal Dirichlet characters have a conjectured random walk behavior, then the Euler product formula for its <i>L</i>-function is valid to the right of the critical line <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>ℜ</mo><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow><mo>></mo><mstyle scriptlevel="0" displaystyle="false"><mfrac><mn>1</mn><mn>2</mn></mfrac></mstyle></mrow></semantics></math></inline-formula>, and the Riemann hypothesis for this class of <i>L</i>-functions follows. Building on this work, here we propose how to extend this line of reasoning to the Riemann zeta function and other principal Dirichlet <i>L</i>-functions. We apply these results to the study of the argument of the zeta function. In another application, we define and study a one-point correlation function of the Riemann zeros, which leads to the construction of a probabilistic model for them. Based on these results we describe a new algorithm for computing very high Riemann zeros, and we calculate the googol-th zero, namely <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>10</mn><mn>100</mn></msup></semantics></math></inline-formula>-th zero to over 100 digits, far beyond what is currently known. Of course, use is made of the symmetry of the zeta function about the critical line. |
format |
article |
author |
André LeClair |
author_facet |
André LeClair |
author_sort |
André LeClair |
title |
Riemann Hypothesis and Random Walks: The Zeta Case |
title_short |
Riemann Hypothesis and Random Walks: The Zeta Case |
title_full |
Riemann Hypothesis and Random Walks: The Zeta Case |
title_fullStr |
Riemann Hypothesis and Random Walks: The Zeta Case |
title_full_unstemmed |
Riemann Hypothesis and Random Walks: The Zeta Case |
title_sort |
riemann hypothesis and random walks: the zeta case |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/5e18b28a5dc940f18d2a12d3425e8e43 |
work_keys_str_mv |
AT andreleclair riemannhypothesisandrandomwalksthezetacase |
_version_ |
1718410280259551232 |