Case Study on the Microbiological Quality, Chemical and Sensorial Profiles of Different Dairy Creams and Ricotta Cheese during Shelf-Life
This work investigated the microbiological quality and chemical profiles of two different dairy creams obtained by centrifugation vs. natural creaming separation systems. To this aim, an untargeted metabolomics approach based on UHPLC-QTOF mass spectrometry was used in combination with multivariate...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5e1ef805c5fc48928b6d0f7679067bdc |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | This work investigated the microbiological quality and chemical profiles of two different dairy creams obtained by centrifugation vs. natural creaming separation systems. To this aim, an untargeted metabolomics approach based on UHPLC-QTOF mass spectrometry was used in combination with multivariate statistical tools to find potential marker compounds of the two different types of two dairy creams. Thereafter, we evaluated the chemical, microbiological and sensorial changes of a ricotta cheese made with a 30% milk cream (i.e., made by combining dairy creams from centrifugation and natural creaming separation) during its shelf-life period (12 days). Overall, microbiological analysis revealed no significant differences between the two types of dairy creams. On the contrary, the trend observed in the growth of degradative bacteria in ricotta during shelf-life was significant. Metabolomics revealed that triacylglycerols and phospholipids showed significant strong down-accumulation trends when comparing samples from the centrifugation and natural creaming separation methods. Additionally, 2,3-Pentanedione was among the best discriminant compounds characterising the shelf-life period of ricotta cheese (VIP score = 1.02), mainly related to sensorial descriptors, such as buttery and cheesy. Multivariate statistics showed a clear impact of the shelf-life period on the ricotta cheese, revealing 139 potential marker compounds (mainly included in amino acids and lipids). Therefore, the approach used showed the potential of a combined metabolomic, microbiological and sensory approach to discriminate ricotta cheese during the shelf-life period. |
---|