Differential expression of chemosensory-protein genes in midguts in response to diet of Spodoptera litura

Abstract While it has been well characterized that chemosensory receptors in guts of mammals have great influence on food preference, much remains elusive in insects. Insect chemosensory proteins (CSPs) are soluble proteins that could deliver chemicals to olfactory and gustatory receptors. Recent st...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Xin Yi, Jiangwei Qi, Xiaofan Zhou, Mei Ying Hu, Guo Hua Zhong
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/5e20672cff094b62a23b2065bb31a9a7
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract While it has been well characterized that chemosensory receptors in guts of mammals have great influence on food preference, much remains elusive in insects. Insect chemosensory proteins (CSPs) are soluble proteins that could deliver chemicals to olfactory and gustatory receptors. Recent studies have identified a number of CSPs expressed in midgut in Lepidoptera insects, which started to reveal their roles in chemical recognition and stimulating appetite in midgut. In this study, we examined expression patterns in midgut of 21 Spodoptera litura CSPs (SlitCSPs) characterized from a previously reported transcriptome, and three CSPs were identified to be expressed highly in midgut. The orthologous relationships between midgut expressed CSPs in S. litura and those in Bombyx mori and Plutella xylostella also suggest a conserved pattern of CSP expression in midgut. We further demonstrated that the expression of midgut-CSPs may change in response to different host plants, and SlitCSPs could bind typical chemicals from host plant in vitro. Overall, our results suggested midgut expressed SlitCSPs may have functional roles, likely contributing to specialization and adaption to different ecosystems. Better knowledge of this critical component of the chemsensation signaling pathways in midguts may improve our understanding of food preference processes in a new perspective.