Increased oxidative stress contributes to enhance brain amyloidogenesis and blunts energy metabolism in sucrose-fed rat: effect of AMPK activation

Abstract Metabolic disturbances are linked to neurodegenerative diseases such as Alzheimer disease (AD). However, the cellular mechanisms underlying this connection are unclear. We evaluated the role of oxidative stress (OS), during early metabolic syndrome (MetS), on amyloidogenic processes in a Me...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Luz Camacho-Castillo, Bryan V. Phillips-Farfán, Gabriela Rosas-Mendoza, Aidee Baires-López, Danira Toral-Ríos, Victoria Campos-Peña, Karla Carvajal
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/5e27d5d0790145468f3c0c90ab8ce75b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:5e27d5d0790145468f3c0c90ab8ce75b
record_format dspace
spelling oai:doaj.org-article:5e27d5d0790145468f3c0c90ab8ce75b2021-12-02T17:18:20ZIncreased oxidative stress contributes to enhance brain amyloidogenesis and blunts energy metabolism in sucrose-fed rat: effect of AMPK activation10.1038/s41598-021-98983-w2045-2322https://doaj.org/article/5e27d5d0790145468f3c0c90ab8ce75b2021-10-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-98983-whttps://doaj.org/toc/2045-2322Abstract Metabolic disturbances are linked to neurodegenerative diseases such as Alzheimer disease (AD). However, the cellular mechanisms underlying this connection are unclear. We evaluated the role of oxidative stress (OS), during early metabolic syndrome (MetS), on amyloidogenic processes in a MetS rat model induced by sucrose. MetS caused OS damage as indicated by serum and hypothalamus lipid peroxidation and elevated serum catalase activity. Tissue catalase and superoxide dismutase activity were unchanged by MetS, but gene expression of nuclear factor erythroid-derived 2-like 2 (NFE2L2), which up-regulates expression of antioxidant enzymes, was higher. Expression of amyloid-β cleaving enzyme 1 (BACE-1) and amyloid precursor protein (APP), key proteins in the amyloidogenesis pathway, were slightly increased by sucrose-intake in the hippocampus and hypothalamus. Activation and expression of protein kinase B (PKB) and AMP-dependent protein kinase (AMPK), pivotal proteins in metabolism and energy signaling, were similarly affected in the hippocampus and hypothalamus of MetS rats. Brain creatine kinase activity decreased in brain tissues from rats with MetS, mainly due to irreversible oxidation. Chronic metformin administration partially reversed oxidative damage in sucrose-fed animals, together with increased AMPK activation; probably by modulating BACE-1 and NFE2L2. AMPK activation may be considered as a preventive therapy for early MetS and associated neurodegenerative diseases.Luz Camacho-CastilloBryan V. Phillips-FarfánGabriela Rosas-MendozaAidee Baires-LópezDanira Toral-RíosVictoria Campos-PeñaKarla CarvajalNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-13 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Luz Camacho-Castillo
Bryan V. Phillips-Farfán
Gabriela Rosas-Mendoza
Aidee Baires-López
Danira Toral-Ríos
Victoria Campos-Peña
Karla Carvajal
Increased oxidative stress contributes to enhance brain amyloidogenesis and blunts energy metabolism in sucrose-fed rat: effect of AMPK activation
description Abstract Metabolic disturbances are linked to neurodegenerative diseases such as Alzheimer disease (AD). However, the cellular mechanisms underlying this connection are unclear. We evaluated the role of oxidative stress (OS), during early metabolic syndrome (MetS), on amyloidogenic processes in a MetS rat model induced by sucrose. MetS caused OS damage as indicated by serum and hypothalamus lipid peroxidation and elevated serum catalase activity. Tissue catalase and superoxide dismutase activity were unchanged by MetS, but gene expression of nuclear factor erythroid-derived 2-like 2 (NFE2L2), which up-regulates expression of antioxidant enzymes, was higher. Expression of amyloid-β cleaving enzyme 1 (BACE-1) and amyloid precursor protein (APP), key proteins in the amyloidogenesis pathway, were slightly increased by sucrose-intake in the hippocampus and hypothalamus. Activation and expression of protein kinase B (PKB) and AMP-dependent protein kinase (AMPK), pivotal proteins in metabolism and energy signaling, were similarly affected in the hippocampus and hypothalamus of MetS rats. Brain creatine kinase activity decreased in brain tissues from rats with MetS, mainly due to irreversible oxidation. Chronic metformin administration partially reversed oxidative damage in sucrose-fed animals, together with increased AMPK activation; probably by modulating BACE-1 and NFE2L2. AMPK activation may be considered as a preventive therapy for early MetS and associated neurodegenerative diseases.
format article
author Luz Camacho-Castillo
Bryan V. Phillips-Farfán
Gabriela Rosas-Mendoza
Aidee Baires-López
Danira Toral-Ríos
Victoria Campos-Peña
Karla Carvajal
author_facet Luz Camacho-Castillo
Bryan V. Phillips-Farfán
Gabriela Rosas-Mendoza
Aidee Baires-López
Danira Toral-Ríos
Victoria Campos-Peña
Karla Carvajal
author_sort Luz Camacho-Castillo
title Increased oxidative stress contributes to enhance brain amyloidogenesis and blunts energy metabolism in sucrose-fed rat: effect of AMPK activation
title_short Increased oxidative stress contributes to enhance brain amyloidogenesis and blunts energy metabolism in sucrose-fed rat: effect of AMPK activation
title_full Increased oxidative stress contributes to enhance brain amyloidogenesis and blunts energy metabolism in sucrose-fed rat: effect of AMPK activation
title_fullStr Increased oxidative stress contributes to enhance brain amyloidogenesis and blunts energy metabolism in sucrose-fed rat: effect of AMPK activation
title_full_unstemmed Increased oxidative stress contributes to enhance brain amyloidogenesis and blunts energy metabolism in sucrose-fed rat: effect of AMPK activation
title_sort increased oxidative stress contributes to enhance brain amyloidogenesis and blunts energy metabolism in sucrose-fed rat: effect of ampk activation
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/5e27d5d0790145468f3c0c90ab8ce75b
work_keys_str_mv AT luzcamachocastillo increasedoxidativestresscontributestoenhancebrainamyloidogenesisandbluntsenergymetabolisminsucrosefedrateffectofampkactivation
AT bryanvphillipsfarfan increasedoxidativestresscontributestoenhancebrainamyloidogenesisandbluntsenergymetabolisminsucrosefedrateffectofampkactivation
AT gabrielarosasmendoza increasedoxidativestresscontributestoenhancebrainamyloidogenesisandbluntsenergymetabolisminsucrosefedrateffectofampkactivation
AT aideebaireslopez increasedoxidativestresscontributestoenhancebrainamyloidogenesisandbluntsenergymetabolisminsucrosefedrateffectofampkactivation
AT daniratoralrios increasedoxidativestresscontributestoenhancebrainamyloidogenesisandbluntsenergymetabolisminsucrosefedrateffectofampkactivation
AT victoriacampospena increasedoxidativestresscontributestoenhancebrainamyloidogenesisandbluntsenergymetabolisminsucrosefedrateffectofampkactivation
AT karlacarvajal increasedoxidativestresscontributestoenhancebrainamyloidogenesisandbluntsenergymetabolisminsucrosefedrateffectofampkactivation
_version_ 1718381147261501440