Increased oxidative stress contributes to enhance brain amyloidogenesis and blunts energy metabolism in sucrose-fed rat: effect of AMPK activation
Abstract Metabolic disturbances are linked to neurodegenerative diseases such as Alzheimer disease (AD). However, the cellular mechanisms underlying this connection are unclear. We evaluated the role of oxidative stress (OS), during early metabolic syndrome (MetS), on amyloidogenic processes in a Me...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5e27d5d0790145468f3c0c90ab8ce75b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:5e27d5d0790145468f3c0c90ab8ce75b |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:5e27d5d0790145468f3c0c90ab8ce75b2021-12-02T17:18:20ZIncreased oxidative stress contributes to enhance brain amyloidogenesis and blunts energy metabolism in sucrose-fed rat: effect of AMPK activation10.1038/s41598-021-98983-w2045-2322https://doaj.org/article/5e27d5d0790145468f3c0c90ab8ce75b2021-10-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-98983-whttps://doaj.org/toc/2045-2322Abstract Metabolic disturbances are linked to neurodegenerative diseases such as Alzheimer disease (AD). However, the cellular mechanisms underlying this connection are unclear. We evaluated the role of oxidative stress (OS), during early metabolic syndrome (MetS), on amyloidogenic processes in a MetS rat model induced by sucrose. MetS caused OS damage as indicated by serum and hypothalamus lipid peroxidation and elevated serum catalase activity. Tissue catalase and superoxide dismutase activity were unchanged by MetS, but gene expression of nuclear factor erythroid-derived 2-like 2 (NFE2L2), which up-regulates expression of antioxidant enzymes, was higher. Expression of amyloid-β cleaving enzyme 1 (BACE-1) and amyloid precursor protein (APP), key proteins in the amyloidogenesis pathway, were slightly increased by sucrose-intake in the hippocampus and hypothalamus. Activation and expression of protein kinase B (PKB) and AMP-dependent protein kinase (AMPK), pivotal proteins in metabolism and energy signaling, were similarly affected in the hippocampus and hypothalamus of MetS rats. Brain creatine kinase activity decreased in brain tissues from rats with MetS, mainly due to irreversible oxidation. Chronic metformin administration partially reversed oxidative damage in sucrose-fed animals, together with increased AMPK activation; probably by modulating BACE-1 and NFE2L2. AMPK activation may be considered as a preventive therapy for early MetS and associated neurodegenerative diseases.Luz Camacho-CastilloBryan V. Phillips-FarfánGabriela Rosas-MendozaAidee Baires-LópezDanira Toral-RíosVictoria Campos-PeñaKarla CarvajalNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-13 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Luz Camacho-Castillo Bryan V. Phillips-Farfán Gabriela Rosas-Mendoza Aidee Baires-López Danira Toral-Ríos Victoria Campos-Peña Karla Carvajal Increased oxidative stress contributes to enhance brain amyloidogenesis and blunts energy metabolism in sucrose-fed rat: effect of AMPK activation |
description |
Abstract Metabolic disturbances are linked to neurodegenerative diseases such as Alzheimer disease (AD). However, the cellular mechanisms underlying this connection are unclear. We evaluated the role of oxidative stress (OS), during early metabolic syndrome (MetS), on amyloidogenic processes in a MetS rat model induced by sucrose. MetS caused OS damage as indicated by serum and hypothalamus lipid peroxidation and elevated serum catalase activity. Tissue catalase and superoxide dismutase activity were unchanged by MetS, but gene expression of nuclear factor erythroid-derived 2-like 2 (NFE2L2), which up-regulates expression of antioxidant enzymes, was higher. Expression of amyloid-β cleaving enzyme 1 (BACE-1) and amyloid precursor protein (APP), key proteins in the amyloidogenesis pathway, were slightly increased by sucrose-intake in the hippocampus and hypothalamus. Activation and expression of protein kinase B (PKB) and AMP-dependent protein kinase (AMPK), pivotal proteins in metabolism and energy signaling, were similarly affected in the hippocampus and hypothalamus of MetS rats. Brain creatine kinase activity decreased in brain tissues from rats with MetS, mainly due to irreversible oxidation. Chronic metformin administration partially reversed oxidative damage in sucrose-fed animals, together with increased AMPK activation; probably by modulating BACE-1 and NFE2L2. AMPK activation may be considered as a preventive therapy for early MetS and associated neurodegenerative diseases. |
format |
article |
author |
Luz Camacho-Castillo Bryan V. Phillips-Farfán Gabriela Rosas-Mendoza Aidee Baires-López Danira Toral-Ríos Victoria Campos-Peña Karla Carvajal |
author_facet |
Luz Camacho-Castillo Bryan V. Phillips-Farfán Gabriela Rosas-Mendoza Aidee Baires-López Danira Toral-Ríos Victoria Campos-Peña Karla Carvajal |
author_sort |
Luz Camacho-Castillo |
title |
Increased oxidative stress contributes to enhance brain amyloidogenesis and blunts energy metabolism in sucrose-fed rat: effect of AMPK activation |
title_short |
Increased oxidative stress contributes to enhance brain amyloidogenesis and blunts energy metabolism in sucrose-fed rat: effect of AMPK activation |
title_full |
Increased oxidative stress contributes to enhance brain amyloidogenesis and blunts energy metabolism in sucrose-fed rat: effect of AMPK activation |
title_fullStr |
Increased oxidative stress contributes to enhance brain amyloidogenesis and blunts energy metabolism in sucrose-fed rat: effect of AMPK activation |
title_full_unstemmed |
Increased oxidative stress contributes to enhance brain amyloidogenesis and blunts energy metabolism in sucrose-fed rat: effect of AMPK activation |
title_sort |
increased oxidative stress contributes to enhance brain amyloidogenesis and blunts energy metabolism in sucrose-fed rat: effect of ampk activation |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/5e27d5d0790145468f3c0c90ab8ce75b |
work_keys_str_mv |
AT luzcamachocastillo increasedoxidativestresscontributestoenhancebrainamyloidogenesisandbluntsenergymetabolisminsucrosefedrateffectofampkactivation AT bryanvphillipsfarfan increasedoxidativestresscontributestoenhancebrainamyloidogenesisandbluntsenergymetabolisminsucrosefedrateffectofampkactivation AT gabrielarosasmendoza increasedoxidativestresscontributestoenhancebrainamyloidogenesisandbluntsenergymetabolisminsucrosefedrateffectofampkactivation AT aideebaireslopez increasedoxidativestresscontributestoenhancebrainamyloidogenesisandbluntsenergymetabolisminsucrosefedrateffectofampkactivation AT daniratoralrios increasedoxidativestresscontributestoenhancebrainamyloidogenesisandbluntsenergymetabolisminsucrosefedrateffectofampkactivation AT victoriacampospena increasedoxidativestresscontributestoenhancebrainamyloidogenesisandbluntsenergymetabolisminsucrosefedrateffectofampkactivation AT karlacarvajal increasedoxidativestresscontributestoenhancebrainamyloidogenesisandbluntsenergymetabolisminsucrosefedrateffectofampkactivation |
_version_ |
1718381147261501440 |