Bias free multiobjective active learning for materials design and discovery
Identifying optimal materials in multiobjective optimization problems represents a challenge for new materials design approaches. Here the authors develop an active-learning algorithm to optimize the Pareto-optimal solutions successfully applied to the in silico polymer design for a dispersant-based...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5e35ebe9396e4369baa0deb7485d7deb |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:5e35ebe9396e4369baa0deb7485d7deb |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:5e35ebe9396e4369baa0deb7485d7deb2021-12-02T17:33:34ZBias free multiobjective active learning for materials design and discovery10.1038/s41467-021-22437-02041-1723https://doaj.org/article/5e35ebe9396e4369baa0deb7485d7deb2021-04-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-22437-0https://doaj.org/toc/2041-1723Identifying optimal materials in multiobjective optimization problems represents a challenge for new materials design approaches. Here the authors develop an active-learning algorithm to optimize the Pareto-optimal solutions successfully applied to the in silico polymer design for a dispersant-based application.Kevin Maik JablonkaGiriprasad Melpatti JothiappanShefang WangBerend SmitBrian YooNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-10 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Kevin Maik Jablonka Giriprasad Melpatti Jothiappan Shefang Wang Berend Smit Brian Yoo Bias free multiobjective active learning for materials design and discovery |
description |
Identifying optimal materials in multiobjective optimization problems represents a challenge for new materials design approaches. Here the authors develop an active-learning algorithm to optimize the Pareto-optimal solutions successfully applied to the in silico polymer design for a dispersant-based application. |
format |
article |
author |
Kevin Maik Jablonka Giriprasad Melpatti Jothiappan Shefang Wang Berend Smit Brian Yoo |
author_facet |
Kevin Maik Jablonka Giriprasad Melpatti Jothiappan Shefang Wang Berend Smit Brian Yoo |
author_sort |
Kevin Maik Jablonka |
title |
Bias free multiobjective active learning for materials design and discovery |
title_short |
Bias free multiobjective active learning for materials design and discovery |
title_full |
Bias free multiobjective active learning for materials design and discovery |
title_fullStr |
Bias free multiobjective active learning for materials design and discovery |
title_full_unstemmed |
Bias free multiobjective active learning for materials design and discovery |
title_sort |
bias free multiobjective active learning for materials design and discovery |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/5e35ebe9396e4369baa0deb7485d7deb |
work_keys_str_mv |
AT kevinmaikjablonka biasfreemultiobjectiveactivelearningformaterialsdesignanddiscovery AT giriprasadmelpattijothiappan biasfreemultiobjectiveactivelearningformaterialsdesignanddiscovery AT shefangwang biasfreemultiobjectiveactivelearningformaterialsdesignanddiscovery AT berendsmit biasfreemultiobjectiveactivelearningformaterialsdesignanddiscovery AT brianyoo biasfreemultiobjectiveactivelearningformaterialsdesignanddiscovery |
_version_ |
1718379942312411136 |