Bias free multiobjective active learning for materials design and discovery
Identifying optimal materials in multiobjective optimization problems represents a challenge for new materials design approaches. Here the authors develop an active-learning algorithm to optimize the Pareto-optimal solutions successfully applied to the in silico polymer design for a dispersant-based...
Guardado en:
Autores principales: | Kevin Maik Jablonka, Giriprasad Melpatti Jothiappan, Shefang Wang, Berend Smit, Brian Yoo |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5e35ebe9396e4369baa0deb7485d7deb |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Machine learning for perovskite materials design and discovery
por: Qiuling Tao, et al.
Publicado: (2021) -
Antimicrobial peptides design by evolutionary multiobjective optimization.
por: Giuseppe Maccari, et al.
Publicado: (2013) -
MULTIOBJECTIVE EVOLUTIONARY ALGORITHMS APPLIED TO MICROSTRIP ANTENNAS DESIGN
por: Rodrigues Brianeze,Juliano, et al.
Publicado: (2009) -
Tool for Designing Breakthrough Discovery in Materials Science
por: Michiko Yoshitake
Publicado: (2021) -
Variable Stiffness Design and Multiobjective Crashworthiness Optimization for Collision Post of Subway Cab Cars
por: Wei Guo, et al.
Publicado: (2021)