Machine learning and deep learning to predict mortality in patients with spontaneous coronary artery dissection
Abstract Machine learning (ML) and deep learning (DL) can successfully predict high prevalence events in very large databases (big data), but the value of this methodology for risk prediction in smaller cohorts with uncommon diseases and infrequent events is uncertain. The clinical course of spontan...
Guardado en:
Autores principales: | Chayakrit Krittanawong, Hafeez Ul Hassan Virk, Anirudh Kumar, Mehmet Aydar, Zhen Wang, Matthew P. Stewart, Jonathan L. Halperin |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5e36399484af465693e619611655de7b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Spontaneous Coronary Artery Dissection: Mechanisms, Diagnosis and Management
por: Marcos Garcia-Guimarães, et al.
Publicado: (2020) -
Spontaneous left main coronary artery dissection complicated with vasospasm
por: Cátia Costa Oliveira, et al.
Publicado: (2021) -
Spontaneous coronary dissection and asymptomatic splenic artery aneurysms in a young woman
por: Michał Chyrchel, et al.
Publicado: (2020) -
Spontaneous left main coronary artery dissection complicated with vasospasm. Case resolution
por: Cátia Costa Oliveira, et al.
Publicado: (2021) -
Spontaneous left main coronary artery dissection complicated with vasospasm. How would I approach it?
por: José Antonio Fernández Díaz
Publicado: (2021)