OmniChange: the sequence independent method for simultaneous site-saturation of five codons.

Focused mutant library generation methods have been developed to improve mainly "localizable" enzyme properties such as activity and selectivity. Current multi-site saturation methods are restricted by the gene sequence, require subsequent PCR steps and/or additional enzymatic modification...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Alexander Dennig, Amol V Shivange, Jan Marienhagen, Ulrich Schwaneberg
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2011
Materias:
R
Q
Acceso en línea:https://doaj.org/article/5e3e714e6b2648028332b834bf2f1569
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Focused mutant library generation methods have been developed to improve mainly "localizable" enzyme properties such as activity and selectivity. Current multi-site saturation methods are restricted by the gene sequence, require subsequent PCR steps and/or additional enzymatic modifications. Here we report, a multiple site saturation mutagenesis method, OmniChange, which simultaneously and efficiently saturates five independent codons. As proof of principle, five chemically cleaved DNA fragments, each carrying one NNK-degenerated codon, were generated and assembled to full gene length in a one-pot-reaction without additional PCR-amplification or use of restriction enzymes or ligases. Sequencing revealed the presence of up to 27 different codons at individual positions, corresponding to 84.4% of the theoretical diversity offered by NNK-degeneration. OmniChange is absolutely sequence independent, does not require a minimal distance between mutated codons and can be accomplished within a day.