A semi high-throughput method for real-time monitoring of curli producing Salmonella biofilms on air-solid interfaces
Biofilms enable bacteria to colonize numerous ecological niches. Bacteria within a biofilm are protected by the extracellular matrix (ECM), of which the fibril-forming amyloid protein curli and polysaccharide cellulose are major components in members of Salmonella, Eschericha and Mycobacterium genus...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5e440faa10c64f5190b12ef898a42788 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:5e440faa10c64f5190b12ef898a42788 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:5e440faa10c64f5190b12ef898a427882021-11-20T05:13:29ZA semi high-throughput method for real-time monitoring of curli producing Salmonella biofilms on air-solid interfaces2590-207510.1016/j.bioflm.2021.100060https://doaj.org/article/5e440faa10c64f5190b12ef898a427882021-12-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S2590207521000186https://doaj.org/toc/2590-2075Biofilms enable bacteria to colonize numerous ecological niches. Bacteria within a biofilm are protected by the extracellular matrix (ECM), of which the fibril-forming amyloid protein curli and polysaccharide cellulose are major components in members of Salmonella, Eschericha and Mycobacterium genus. A shortage of real-time detection methods has limited our understanding of how ECM production contributes to biofilm formation and pathogenicity. Here we present optotracing as a new semi-high throughput method for dynamic monitoring of Salmonella biofilm growth on air-solid interfaces. We show how an optotracer with binding-induced fluorescence acts as a dynamic fluorescent reporter of curli expression during biofilm formation on agar. Using spectrophotometry and microscopic imaging of fluorescence, we analyse in real-time the development of the curli architecture in relation to bacterial cells. With exceptional spatial and temporal precision, this revealed a well-structured, non-uniform distribution of curli organised in distally projecting radial channel patterns. Dynamic monitoring of the biofilm also showed defined regions undergoing different growth phases. ECM structures were found to assemble in regions of late exponential growth phase, suggesting that ECM forms on site after bacteria colonize the surface. As the optotracer biofilm method expedites screening of curli production, providing exceptional spatial-temporal understanding of the surface-associated biofilm lifestyle, this method adds a new technique to further our understanding of bacterial biofilms.Ferdinand X. ChoongSmilla HuzellMing RosenbergJohannes A. EckertMadhu NagarajTianqi ZhangKeira MelicanDaniel E. OtzenAgneta Richter-DahlforsElsevierarticleOptotracingBiofilmSalmonellaCurliReal-time monitoringMorphotypingBiotechnologyTP248.13-248.65MicrobiologyQR1-502ENBiofilm, Vol 3, Iss , Pp 100060- (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Optotracing Biofilm Salmonella Curli Real-time monitoring Morphotyping Biotechnology TP248.13-248.65 Microbiology QR1-502 |
spellingShingle |
Optotracing Biofilm Salmonella Curli Real-time monitoring Morphotyping Biotechnology TP248.13-248.65 Microbiology QR1-502 Ferdinand X. Choong Smilla Huzell Ming Rosenberg Johannes A. Eckert Madhu Nagaraj Tianqi Zhang Keira Melican Daniel E. Otzen Agneta Richter-Dahlfors A semi high-throughput method for real-time monitoring of curli producing Salmonella biofilms on air-solid interfaces |
description |
Biofilms enable bacteria to colonize numerous ecological niches. Bacteria within a biofilm are protected by the extracellular matrix (ECM), of which the fibril-forming amyloid protein curli and polysaccharide cellulose are major components in members of Salmonella, Eschericha and Mycobacterium genus. A shortage of real-time detection methods has limited our understanding of how ECM production contributes to biofilm formation and pathogenicity. Here we present optotracing as a new semi-high throughput method for dynamic monitoring of Salmonella biofilm growth on air-solid interfaces. We show how an optotracer with binding-induced fluorescence acts as a dynamic fluorescent reporter of curli expression during biofilm formation on agar. Using spectrophotometry and microscopic imaging of fluorescence, we analyse in real-time the development of the curli architecture in relation to bacterial cells. With exceptional spatial and temporal precision, this revealed a well-structured, non-uniform distribution of curli organised in distally projecting radial channel patterns. Dynamic monitoring of the biofilm also showed defined regions undergoing different growth phases. ECM structures were found to assemble in regions of late exponential growth phase, suggesting that ECM forms on site after bacteria colonize the surface. As the optotracer biofilm method expedites screening of curli production, providing exceptional spatial-temporal understanding of the surface-associated biofilm lifestyle, this method adds a new technique to further our understanding of bacterial biofilms. |
format |
article |
author |
Ferdinand X. Choong Smilla Huzell Ming Rosenberg Johannes A. Eckert Madhu Nagaraj Tianqi Zhang Keira Melican Daniel E. Otzen Agneta Richter-Dahlfors |
author_facet |
Ferdinand X. Choong Smilla Huzell Ming Rosenberg Johannes A. Eckert Madhu Nagaraj Tianqi Zhang Keira Melican Daniel E. Otzen Agneta Richter-Dahlfors |
author_sort |
Ferdinand X. Choong |
title |
A semi high-throughput method for real-time monitoring of curli producing Salmonella biofilms on air-solid interfaces |
title_short |
A semi high-throughput method for real-time monitoring of curli producing Salmonella biofilms on air-solid interfaces |
title_full |
A semi high-throughput method for real-time monitoring of curli producing Salmonella biofilms on air-solid interfaces |
title_fullStr |
A semi high-throughput method for real-time monitoring of curli producing Salmonella biofilms on air-solid interfaces |
title_full_unstemmed |
A semi high-throughput method for real-time monitoring of curli producing Salmonella biofilms on air-solid interfaces |
title_sort |
semi high-throughput method for real-time monitoring of curli producing salmonella biofilms on air-solid interfaces |
publisher |
Elsevier |
publishDate |
2021 |
url |
https://doaj.org/article/5e440faa10c64f5190b12ef898a42788 |
work_keys_str_mv |
AT ferdinandxchoong asemihighthroughputmethodforrealtimemonitoringofcurliproducingsalmonellabiofilmsonairsolidinterfaces AT smillahuzell asemihighthroughputmethodforrealtimemonitoringofcurliproducingsalmonellabiofilmsonairsolidinterfaces AT mingrosenberg asemihighthroughputmethodforrealtimemonitoringofcurliproducingsalmonellabiofilmsonairsolidinterfaces AT johannesaeckert asemihighthroughputmethodforrealtimemonitoringofcurliproducingsalmonellabiofilmsonairsolidinterfaces AT madhunagaraj asemihighthroughputmethodforrealtimemonitoringofcurliproducingsalmonellabiofilmsonairsolidinterfaces AT tianqizhang asemihighthroughputmethodforrealtimemonitoringofcurliproducingsalmonellabiofilmsonairsolidinterfaces AT keiramelican asemihighthroughputmethodforrealtimemonitoringofcurliproducingsalmonellabiofilmsonairsolidinterfaces AT danieleotzen asemihighthroughputmethodforrealtimemonitoringofcurliproducingsalmonellabiofilmsonairsolidinterfaces AT agnetarichterdahlfors asemihighthroughputmethodforrealtimemonitoringofcurliproducingsalmonellabiofilmsonairsolidinterfaces AT ferdinandxchoong semihighthroughputmethodforrealtimemonitoringofcurliproducingsalmonellabiofilmsonairsolidinterfaces AT smillahuzell semihighthroughputmethodforrealtimemonitoringofcurliproducingsalmonellabiofilmsonairsolidinterfaces AT mingrosenberg semihighthroughputmethodforrealtimemonitoringofcurliproducingsalmonellabiofilmsonairsolidinterfaces AT johannesaeckert semihighthroughputmethodforrealtimemonitoringofcurliproducingsalmonellabiofilmsonairsolidinterfaces AT madhunagaraj semihighthroughputmethodforrealtimemonitoringofcurliproducingsalmonellabiofilmsonairsolidinterfaces AT tianqizhang semihighthroughputmethodforrealtimemonitoringofcurliproducingsalmonellabiofilmsonairsolidinterfaces AT keiramelican semihighthroughputmethodforrealtimemonitoringofcurliproducingsalmonellabiofilmsonairsolidinterfaces AT danieleotzen semihighthroughputmethodforrealtimemonitoringofcurliproducingsalmonellabiofilmsonairsolidinterfaces AT agnetarichterdahlfors semihighthroughputmethodforrealtimemonitoringofcurliproducingsalmonellabiofilmsonairsolidinterfaces |
_version_ |
1718419543824531456 |