Partial sums and inclusion relations for analytic functions involving (p, q)-differential operator
Let fk(z)=z+∑n=2kanzn{f}_{k}\left(z)=z+{\sum }_{n=2}^{k}{a}_{n}{z}^{n} be the sequence of partial sums of the analytic function f(z)=z+∑n=2∞anznf\left(z)=z+{\sum }_{n=2}^{\infty }{a}_{n}{z}^{n}. In this paper, we determine sharp lower bounds for Re{f(z)/fk(z)}{\rm{Re}}\{f\left(z)\hspace{-0.08em}\tex...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5e4a1d6bcd1a43eb8bd7d9e85a3795b1 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:5e4a1d6bcd1a43eb8bd7d9e85a3795b1 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:5e4a1d6bcd1a43eb8bd7d9e85a3795b12021-12-05T14:10:52ZPartial sums and inclusion relations for analytic functions involving (p, q)-differential operator2391-545510.1515/math-2021-0028https://doaj.org/article/5e4a1d6bcd1a43eb8bd7d9e85a3795b12021-05-01T00:00:00Zhttps://doi.org/10.1515/math-2021-0028https://doaj.org/toc/2391-5455Let fk(z)=z+∑n=2kanzn{f}_{k}\left(z)=z+{\sum }_{n=2}^{k}{a}_{n}{z}^{n} be the sequence of partial sums of the analytic function f(z)=z+∑n=2∞anznf\left(z)=z+{\sum }_{n=2}^{\infty }{a}_{n}{z}^{n}. In this paper, we determine sharp lower bounds for Re{f(z)/fk(z)}{\rm{Re}}\{f\left(z)\hspace{-0.08em}\text{/}\hspace{-0.08em}{f}_{k}\left(z)\}, Re{fk(z)/f(z)}{\rm{Re}}\{{f}_{k}\left(z)\hspace{-0.08em}\text{/}\hspace{-0.08em}f\left(z)\}, Re{f′(z)/fk′(z)}{\rm{Re}}\{{f}^{^{\prime} }\left(z)\hspace{-0.08em}\text{/}\hspace{-0.08em}{f}_{k}^{^{\prime} }\left(z)\} and Re{fk′(z)/f′(z)}{\rm{Re}}\{{f}_{k}^{^{\prime} }\left(z)\hspace{-0.08em}\text{/}\hspace{-0.08em}{f}^{^{\prime} }\left(z)\}, where f(z)f\left(z) belongs to the subclass Jp,qm(μ,α,β){{\mathcal{J}}}_{p,q}^{m}\left(\mu ,\alpha ,\beta ) of analytic functions, defined by Sălăgean (p,q)\left(p,q)-differential operator. In addition, the inclusion relations involving Nδ(e){N}_{\delta }\left(e) of this generalized function class are considered.Tang HuoVijaya KaliappanMurugusundaramoorthy GangadharanSivasubramanian SrikandanDe Gruyterarticleanalyticunivalent(p, q)-differential operatorpartial suminclusion relation30c4530c50MathematicsQA1-939ENOpen Mathematics, Vol 19, Iss 1, Pp 329-337 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
analytic univalent (p, q)-differential operator partial sum inclusion relation 30c45 30c50 Mathematics QA1-939 |
spellingShingle |
analytic univalent (p, q)-differential operator partial sum inclusion relation 30c45 30c50 Mathematics QA1-939 Tang Huo Vijaya Kaliappan Murugusundaramoorthy Gangadharan Sivasubramanian Srikandan Partial sums and inclusion relations for analytic functions involving (p, q)-differential operator |
description |
Let fk(z)=z+∑n=2kanzn{f}_{k}\left(z)=z+{\sum }_{n=2}^{k}{a}_{n}{z}^{n} be the sequence of partial sums of the analytic function f(z)=z+∑n=2∞anznf\left(z)=z+{\sum }_{n=2}^{\infty }{a}_{n}{z}^{n}. In this paper, we determine sharp lower bounds for Re{f(z)/fk(z)}{\rm{Re}}\{f\left(z)\hspace{-0.08em}\text{/}\hspace{-0.08em}{f}_{k}\left(z)\}, Re{fk(z)/f(z)}{\rm{Re}}\{{f}_{k}\left(z)\hspace{-0.08em}\text{/}\hspace{-0.08em}f\left(z)\}, Re{f′(z)/fk′(z)}{\rm{Re}}\{{f}^{^{\prime} }\left(z)\hspace{-0.08em}\text{/}\hspace{-0.08em}{f}_{k}^{^{\prime} }\left(z)\} and Re{fk′(z)/f′(z)}{\rm{Re}}\{{f}_{k}^{^{\prime} }\left(z)\hspace{-0.08em}\text{/}\hspace{-0.08em}{f}^{^{\prime} }\left(z)\}, where f(z)f\left(z) belongs to the subclass Jp,qm(μ,α,β){{\mathcal{J}}}_{p,q}^{m}\left(\mu ,\alpha ,\beta ) of analytic functions, defined by Sălăgean (p,q)\left(p,q)-differential operator. In addition, the inclusion relations involving Nδ(e){N}_{\delta }\left(e) of this generalized function class are considered. |
format |
article |
author |
Tang Huo Vijaya Kaliappan Murugusundaramoorthy Gangadharan Sivasubramanian Srikandan |
author_facet |
Tang Huo Vijaya Kaliappan Murugusundaramoorthy Gangadharan Sivasubramanian Srikandan |
author_sort |
Tang Huo |
title |
Partial sums and inclusion relations for analytic functions involving (p, q)-differential operator |
title_short |
Partial sums and inclusion relations for analytic functions involving (p, q)-differential operator |
title_full |
Partial sums and inclusion relations for analytic functions involving (p, q)-differential operator |
title_fullStr |
Partial sums and inclusion relations for analytic functions involving (p, q)-differential operator |
title_full_unstemmed |
Partial sums and inclusion relations for analytic functions involving (p, q)-differential operator |
title_sort |
partial sums and inclusion relations for analytic functions involving (p, q)-differential operator |
publisher |
De Gruyter |
publishDate |
2021 |
url |
https://doaj.org/article/5e4a1d6bcd1a43eb8bd7d9e85a3795b1 |
work_keys_str_mv |
AT tanghuo partialsumsandinclusionrelationsforanalyticfunctionsinvolvingpqdifferentialoperator AT vijayakaliappan partialsumsandinclusionrelationsforanalyticfunctionsinvolvingpqdifferentialoperator AT murugusundaramoorthygangadharan partialsumsandinclusionrelationsforanalyticfunctionsinvolvingpqdifferentialoperator AT sivasubramaniansrikandan partialsumsandinclusionrelationsforanalyticfunctionsinvolvingpqdifferentialoperator |
_version_ |
1718371645410770944 |