Chitosan–tripolyphosphate nanoparticles as Arrabidaea chica standardized extract carrier: synthesis, characterization, biocompatibility, and antiulcerogenic activity

Leila Servat-Medina,1,2 Alvaro González-Gómez,2,3 Felisa Reyes-Ortega,2 Ilza Maria Oliveira Sousa,1 Nubia de Cássia Almeida Queiroz,1 Patricia Maria Wiziack Zago,1 Michelle Pedrosa Jorge,1 Karin Maia Monteiro,1,4 João Ernesto de Carvalho,1 Julio San Rom&am...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Servat-Medina L, González-Gómez A, Reyes-Ortega F, Sousa IMO, Queiroz NCA, Zago PMW, Jorge MP, Monteiro KM, de Carvalho JE, San Román J, Foglio MA
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2015
Materias:
Acceso en línea:https://doaj.org/article/5e52d2d0a5064711899bdd83db7ecae7
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:5e52d2d0a5064711899bdd83db7ecae7
record_format dspace
spelling oai:doaj.org-article:5e52d2d0a5064711899bdd83db7ecae72021-12-02T02:13:09ZChitosan–tripolyphosphate nanoparticles as Arrabidaea chica standardized extract carrier: synthesis, characterization, biocompatibility, and antiulcerogenic activity1178-2013https://doaj.org/article/5e52d2d0a5064711899bdd83db7ecae72015-06-01T00:00:00Zhttp://www.dovepress.com/chitosanndashtripolyphosphate-nanoparticles-as-arrabidaea-chica-standa-peer-reviewed-article-IJNhttps://doaj.org/toc/1178-2013Leila Servat-Medina,1,2 Alvaro González-Gómez,2,3 Felisa Reyes-Ortega,2 Ilza Maria Oliveira Sousa,1 Nubia de Cássia Almeida Queiroz,1 Patricia Maria Wiziack Zago,1 Michelle Pedrosa Jorge,1 Karin Maia Monteiro,1,4 João Ernesto de Carvalho,1 Julio San Román,2,3 Mary Ann Foglio1 1Chemical, Biological and Agricultural Pluridisciplinary Research Center-State University of Campinas (CPQBA-UNICAMP), Campinas-SP, Brazil; 2Biomaterials Group, Polymer Science and Technology Institute-Spanish National Research Council (ICTP-CSIC), 3CIBER-BBN, Centro de Investigación Biomédica en Red, Madrid, Spain; 4Department of Medical Clinics, Faculty of Medical Sciences, University of Campinas, Campinas-SP, Brazil Abstract: Natural products using plants have received considerable attention because of their potential to treat various diseases. Arrabidaea chica (Humb. & Bonpl.) B. Verlot is a native tropical American vine with healing properties employed in folk medicine for wound healing, inflammation, and gastrointestinal colic. Applying nanotechnology to plant extracts has revealed an advantageous strategy for herbal drugs considering the numerous features that nanostructured systems offer, including solubility, bioavailability, and pharmacological activity enhancement. The present study reports the preparation and characterization of chitosan–sodium tripolyphosphate nanoparticles (NPs) charged with A. chica standardized extract (AcE). Particle size and zeta potential were measured using a Zetasizer Nano ZS. The NP morphological characteristics were observed using scanning electron microscopy. Our studies indicated that the chitosan/sodium tripolyphosphate mass ratio of 5 and volume ratio of 10 were found to be the best condition to achieve the lowest NP sizes, with an average hydrodynamic diameter of 150±13 nm and a zeta potential of +45±2 mV. Particle size decreased with AcE addition (60±10.2 nm), suggesting an interaction between the extract’s composition and polymers. The NP biocompatibility was evaluated using human skin fibroblasts. AcE-NP demonstrated capability of maintaining cell viability at the lowest concentrations tested, stimulating cell proliferation at higher concentrations. Antiulcerogenic activity of AcE-NP was also evaluated with an acute gastric ulcer experimental model induced by ethanol and indomethacin. NPs loaded with A. chica extract reduced the ulcerative lesion index using lower doses compared with the free extract, suggesting that extract encapsulation in chitosan NPs allowed for a dose reduction for a gastroprotective effect. The AcE encapsulation offers an approach for further application of the A. chica extract that could be considered a potential candidate for ulcer-healing pharmaceutical systems. Keywords: natural product, Arrabidaea chica, chitosan, nanoparticle, plant extract, herbal drug, ulcer healingServat-Medina LGonzález-Gómez AReyes-Ortega FSousa IMOQueiroz NCAZago PMWJorge MPMonteiro KMde Carvalho JESan Román JFoglio MADove Medical PressarticleMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol 2015, Iss default, Pp 3897-3909 (2015)
institution DOAJ
collection DOAJ
language EN
topic Medicine (General)
R5-920
spellingShingle Medicine (General)
R5-920
Servat-Medina L
González-Gómez A
Reyes-Ortega F
Sousa IMO
Queiroz NCA
Zago PMW
Jorge MP
Monteiro KM
de Carvalho JE
San Román J
Foglio MA
Chitosan–tripolyphosphate nanoparticles as Arrabidaea chica standardized extract carrier: synthesis, characterization, biocompatibility, and antiulcerogenic activity
description Leila Servat-Medina,1,2 Alvaro González-Gómez,2,3 Felisa Reyes-Ortega,2 Ilza Maria Oliveira Sousa,1 Nubia de Cássia Almeida Queiroz,1 Patricia Maria Wiziack Zago,1 Michelle Pedrosa Jorge,1 Karin Maia Monteiro,1,4 João Ernesto de Carvalho,1 Julio San Román,2,3 Mary Ann Foglio1 1Chemical, Biological and Agricultural Pluridisciplinary Research Center-State University of Campinas (CPQBA-UNICAMP), Campinas-SP, Brazil; 2Biomaterials Group, Polymer Science and Technology Institute-Spanish National Research Council (ICTP-CSIC), 3CIBER-BBN, Centro de Investigación Biomédica en Red, Madrid, Spain; 4Department of Medical Clinics, Faculty of Medical Sciences, University of Campinas, Campinas-SP, Brazil Abstract: Natural products using plants have received considerable attention because of their potential to treat various diseases. Arrabidaea chica (Humb. & Bonpl.) B. Verlot is a native tropical American vine with healing properties employed in folk medicine for wound healing, inflammation, and gastrointestinal colic. Applying nanotechnology to plant extracts has revealed an advantageous strategy for herbal drugs considering the numerous features that nanostructured systems offer, including solubility, bioavailability, and pharmacological activity enhancement. The present study reports the preparation and characterization of chitosan–sodium tripolyphosphate nanoparticles (NPs) charged with A. chica standardized extract (AcE). Particle size and zeta potential were measured using a Zetasizer Nano ZS. The NP morphological characteristics were observed using scanning electron microscopy. Our studies indicated that the chitosan/sodium tripolyphosphate mass ratio of 5 and volume ratio of 10 were found to be the best condition to achieve the lowest NP sizes, with an average hydrodynamic diameter of 150±13 nm and a zeta potential of +45±2 mV. Particle size decreased with AcE addition (60±10.2 nm), suggesting an interaction between the extract’s composition and polymers. The NP biocompatibility was evaluated using human skin fibroblasts. AcE-NP demonstrated capability of maintaining cell viability at the lowest concentrations tested, stimulating cell proliferation at higher concentrations. Antiulcerogenic activity of AcE-NP was also evaluated with an acute gastric ulcer experimental model induced by ethanol and indomethacin. NPs loaded with A. chica extract reduced the ulcerative lesion index using lower doses compared with the free extract, suggesting that extract encapsulation in chitosan NPs allowed for a dose reduction for a gastroprotective effect. The AcE encapsulation offers an approach for further application of the A. chica extract that could be considered a potential candidate for ulcer-healing pharmaceutical systems. Keywords: natural product, Arrabidaea chica, chitosan, nanoparticle, plant extract, herbal drug, ulcer healing
format article
author Servat-Medina L
González-Gómez A
Reyes-Ortega F
Sousa IMO
Queiroz NCA
Zago PMW
Jorge MP
Monteiro KM
de Carvalho JE
San Román J
Foglio MA
author_facet Servat-Medina L
González-Gómez A
Reyes-Ortega F
Sousa IMO
Queiroz NCA
Zago PMW
Jorge MP
Monteiro KM
de Carvalho JE
San Román J
Foglio MA
author_sort Servat-Medina L
title Chitosan–tripolyphosphate nanoparticles as Arrabidaea chica standardized extract carrier: synthesis, characterization, biocompatibility, and antiulcerogenic activity
title_short Chitosan–tripolyphosphate nanoparticles as Arrabidaea chica standardized extract carrier: synthesis, characterization, biocompatibility, and antiulcerogenic activity
title_full Chitosan–tripolyphosphate nanoparticles as Arrabidaea chica standardized extract carrier: synthesis, characterization, biocompatibility, and antiulcerogenic activity
title_fullStr Chitosan–tripolyphosphate nanoparticles as Arrabidaea chica standardized extract carrier: synthesis, characterization, biocompatibility, and antiulcerogenic activity
title_full_unstemmed Chitosan–tripolyphosphate nanoparticles as Arrabidaea chica standardized extract carrier: synthesis, characterization, biocompatibility, and antiulcerogenic activity
title_sort chitosan–tripolyphosphate nanoparticles as arrabidaea chica standardized extract carrier: synthesis, characterization, biocompatibility, and antiulcerogenic activity
publisher Dove Medical Press
publishDate 2015
url https://doaj.org/article/5e52d2d0a5064711899bdd83db7ecae7
work_keys_str_mv AT servatmedinal chitosanndashtripolyphosphatenanoparticlesasarrabidaeachicastandardizedextractcarriersynthesischaracterizationbiocompatibilityandnbspantiulcerogenicactivity
AT gonzaacutelezgoacutemeza chitosanndashtripolyphosphatenanoparticlesasarrabidaeachicastandardizedextractcarriersynthesischaracterizationbiocompatibilityandnbspantiulcerogenicactivity
AT reyesortegaf chitosanndashtripolyphosphatenanoparticlesasarrabidaeachicastandardizedextractcarriersynthesischaracterizationbiocompatibilityandnbspantiulcerogenicactivity
AT sousaimo chitosanndashtripolyphosphatenanoparticlesasarrabidaeachicastandardizedextractcarriersynthesischaracterizationbiocompatibilityandnbspantiulcerogenicactivity
AT queiroznca chitosanndashtripolyphosphatenanoparticlesasarrabidaeachicastandardizedextractcarriersynthesischaracterizationbiocompatibilityandnbspantiulcerogenicactivity
AT zagopmw chitosanndashtripolyphosphatenanoparticlesasarrabidaeachicastandardizedextractcarriersynthesischaracterizationbiocompatibilityandnbspantiulcerogenicactivity
AT jorgemp chitosanndashtripolyphosphatenanoparticlesasarrabidaeachicastandardizedextractcarriersynthesischaracterizationbiocompatibilityandnbspantiulcerogenicactivity
AT monteirokm chitosanndashtripolyphosphatenanoparticlesasarrabidaeachicastandardizedextractcarriersynthesischaracterizationbiocompatibilityandnbspantiulcerogenicactivity
AT decarvalhoje chitosanndashtripolyphosphatenanoparticlesasarrabidaeachicastandardizedextractcarriersynthesischaracterizationbiocompatibilityandnbspantiulcerogenicactivity
AT sanromaacutenj chitosanndashtripolyphosphatenanoparticlesasarrabidaeachicastandardizedextractcarriersynthesischaracterizationbiocompatibilityandnbspantiulcerogenicactivity
AT foglioma chitosanndashtripolyphosphatenanoparticlesasarrabidaeachicastandardizedextractcarriersynthesischaracterizationbiocompatibilityandnbspantiulcerogenicactivity
_version_ 1718402598117048320