Identification of natural selection in genomic data with deep convolutional neural network
Abstract Background With the increase in the size of genomic datasets describing variability in populations, extracting relevant information becomes increasingly useful as well as complex. Recently, computational methodologies such as Supervised Machine Learning and specifically Convolutional Neural...
Enregistré dans:
Auteurs principaux: | Arnaud Nguembang Fadja, Fabrizio Riguzzi, Giorgio Bertorelle, Emiliano Trucchi |
---|---|
Format: | article |
Langue: | EN |
Publié: |
BMC
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/5e540e5ba9c846429f8779d37d55e3f3 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Correction to: iGlioSub: an integrative transcriptomic and epigenomic classifier for glioblastoma molecular subtypes
par: Miquel Ensenyat-Mendez, et autres
Publié: (2021) -
Development of glaucoma predictive model and risk factors assessment based on supervised models
par: Mahyar Sharifi, et autres
Publié: (2021) -
LPI-EnEDT: an ensemble framework with extra tree and decision tree classifiers for imbalanced lncRNA-protein interaction data classification
par: Lihong Peng, et autres
Publié: (2021) -
Gaussian noise up-sampling is better suited than SMOTE and ADASYN for clinical decision making
par: Jacqueline Beinecke, et autres
Publié: (2021) -
Spliceator: multi-species splice site prediction using convolutional neural networks
par: Nicolas Scalzitti, et autres
Publié: (2021)