Factoring the Modulus of Type <i>N</i> = <i>p</i><sup>2</sup><i>q</i> by Finding Small Solutions of the Equation <i>e</i><i>r</i> − (<i>N</i><i>s</i> + <i>t</i>) = <i>α</i><i>p</i><sup>2</sup> + <i>β</i><i>q</i><sup>2</sup>
The modulus of type <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><mo>=</mo><msup><mi>p</mi><mn>2</mn></msup><mi>q</mi>&l...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5e5ef54cbe1c42108cb03ac6701886d7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:5e5ef54cbe1c42108cb03ac6701886d7 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:5e5ef54cbe1c42108cb03ac6701886d72021-11-25T18:17:19ZFactoring the Modulus of Type <i>N</i> = <i>p</i><sup>2</sup><i>q</i> by Finding Small Solutions of the Equation <i>e</i><i>r</i> − (<i>N</i><i>s</i> + <i>t</i>) = <i>α</i><i>p</i><sup>2</sup> + <i>β</i><i>q</i><sup>2</sup>10.3390/math92229312227-7390https://doaj.org/article/5e5ef54cbe1c42108cb03ac6701886d72021-11-01T00:00:00Zhttps://www.mdpi.com/2227-7390/9/22/2931https://doaj.org/toc/2227-7390The modulus of type <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><mo>=</mo><msup><mi>p</mi><mn>2</mn></msup><mi>q</mi></mrow></semantics></math></inline-formula> is often used in many variants of factoring-based cryptosystems due to its ability to fasten the decryption process. Faster decryption is suitable for securing small devices in the Internet of Things (IoT) environment or securing fast-forwarding encryption services used in mobile applications. Taking this into account, the security analysis of such modulus is indeed paramount. This paper presents two cryptanalyses that use new enabling conditions to factor the modulus <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><mo>=</mo><msup><mi>p</mi><mn>2</mn></msup><mi>q</mi></mrow></semantics></math></inline-formula> of the factoring-based cryptosystem. The first cryptanalysis considers a single user with a public key pair <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>e</mi><mo>,</mo><mi>N</mi><mo>)</mo></mrow></semantics></math></inline-formula> related via an arbitrary relation to equation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>e</mi><mi>r</mi><mo>−</mo><mrow><mo>(</mo><mi>N</mi><mi>s</mi><mo>+</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><mi>α</mi><msup><mi>p</mi><mn>2</mn></msup><mo>+</mo><mi>β</mi><msup><mi>q</mi><mn>2</mn></msup></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>r</mi><mo>,</mo><mi>s</mi><mo>,</mo><mi>t</mi></mrow></semantics></math></inline-formula> are unknown parameters. The second cryptanalysis considers two distinct cases in the situation of <i>k</i>-users (i.e., multiple users) for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>≥</mo><mn>2</mn></mrow></semantics></math></inline-formula>, given the instances of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><msub><mi>N</mi><mi>i</mi></msub><mo>,</mo><msub><mi>e</mi><mi>i</mi></msub><mo>)</mo></mrow></semantics></math></inline-formula> where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>k</mi></mrow></semantics></math></inline-formula>. By using the lattice basis reduction algorithm for solving simultaneous Diophantine approximation, the <i>k</i>-instances of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><msub><mi>N</mi><mi>i</mi></msub><mo>,</mo><msub><mi>e</mi><mi>i</mi></msub><mo>)</mo></mrow></semantics></math></inline-formula> can be successfully factored in polynomial time.Muhammad Asyraf AsbullahNormahirah Nek Abd RahmanMuhammad Rezal Kamel AriffinNur Raidah SalimMDPI AGarticlecryptographyIoT securitylattice basis reductionDiophantine approximationpre-quantum cryptographyMathematicsQA1-939ENMathematics, Vol 9, Iss 2931, p 2931 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
cryptography IoT security lattice basis reduction Diophantine approximation pre-quantum cryptography Mathematics QA1-939 |
spellingShingle |
cryptography IoT security lattice basis reduction Diophantine approximation pre-quantum cryptography Mathematics QA1-939 Muhammad Asyraf Asbullah Normahirah Nek Abd Rahman Muhammad Rezal Kamel Ariffin Nur Raidah Salim Factoring the Modulus of Type <i>N</i> = <i>p</i><sup>2</sup><i>q</i> by Finding Small Solutions of the Equation <i>e</i><i>r</i> − (<i>N</i><i>s</i> + <i>t</i>) = <i>α</i><i>p</i><sup>2</sup> + <i>β</i><i>q</i><sup>2</sup> |
description |
The modulus of type <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><mo>=</mo><msup><mi>p</mi><mn>2</mn></msup><mi>q</mi></mrow></semantics></math></inline-formula> is often used in many variants of factoring-based cryptosystems due to its ability to fasten the decryption process. Faster decryption is suitable for securing small devices in the Internet of Things (IoT) environment or securing fast-forwarding encryption services used in mobile applications. Taking this into account, the security analysis of such modulus is indeed paramount. This paper presents two cryptanalyses that use new enabling conditions to factor the modulus <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><mo>=</mo><msup><mi>p</mi><mn>2</mn></msup><mi>q</mi></mrow></semantics></math></inline-formula> of the factoring-based cryptosystem. The first cryptanalysis considers a single user with a public key pair <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>e</mi><mo>,</mo><mi>N</mi><mo>)</mo></mrow></semantics></math></inline-formula> related via an arbitrary relation to equation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>e</mi><mi>r</mi><mo>−</mo><mrow><mo>(</mo><mi>N</mi><mi>s</mi><mo>+</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><mi>α</mi><msup><mi>p</mi><mn>2</mn></msup><mo>+</mo><mi>β</mi><msup><mi>q</mi><mn>2</mn></msup></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>r</mi><mo>,</mo><mi>s</mi><mo>,</mo><mi>t</mi></mrow></semantics></math></inline-formula> are unknown parameters. The second cryptanalysis considers two distinct cases in the situation of <i>k</i>-users (i.e., multiple users) for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>≥</mo><mn>2</mn></mrow></semantics></math></inline-formula>, given the instances of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><msub><mi>N</mi><mi>i</mi></msub><mo>,</mo><msub><mi>e</mi><mi>i</mi></msub><mo>)</mo></mrow></semantics></math></inline-formula> where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>k</mi></mrow></semantics></math></inline-formula>. By using the lattice basis reduction algorithm for solving simultaneous Diophantine approximation, the <i>k</i>-instances of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><msub><mi>N</mi><mi>i</mi></msub><mo>,</mo><msub><mi>e</mi><mi>i</mi></msub><mo>)</mo></mrow></semantics></math></inline-formula> can be successfully factored in polynomial time. |
format |
article |
author |
Muhammad Asyraf Asbullah Normahirah Nek Abd Rahman Muhammad Rezal Kamel Ariffin Nur Raidah Salim |
author_facet |
Muhammad Asyraf Asbullah Normahirah Nek Abd Rahman Muhammad Rezal Kamel Ariffin Nur Raidah Salim |
author_sort |
Muhammad Asyraf Asbullah |
title |
Factoring the Modulus of Type <i>N</i> = <i>p</i><sup>2</sup><i>q</i> by Finding Small Solutions of the Equation <i>e</i><i>r</i> − (<i>N</i><i>s</i> + <i>t</i>) = <i>α</i><i>p</i><sup>2</sup> + <i>β</i><i>q</i><sup>2</sup> |
title_short |
Factoring the Modulus of Type <i>N</i> = <i>p</i><sup>2</sup><i>q</i> by Finding Small Solutions of the Equation <i>e</i><i>r</i> − (<i>N</i><i>s</i> + <i>t</i>) = <i>α</i><i>p</i><sup>2</sup> + <i>β</i><i>q</i><sup>2</sup> |
title_full |
Factoring the Modulus of Type <i>N</i> = <i>p</i><sup>2</sup><i>q</i> by Finding Small Solutions of the Equation <i>e</i><i>r</i> − (<i>N</i><i>s</i> + <i>t</i>) = <i>α</i><i>p</i><sup>2</sup> + <i>β</i><i>q</i><sup>2</sup> |
title_fullStr |
Factoring the Modulus of Type <i>N</i> = <i>p</i><sup>2</sup><i>q</i> by Finding Small Solutions of the Equation <i>e</i><i>r</i> − (<i>N</i><i>s</i> + <i>t</i>) = <i>α</i><i>p</i><sup>2</sup> + <i>β</i><i>q</i><sup>2</sup> |
title_full_unstemmed |
Factoring the Modulus of Type <i>N</i> = <i>p</i><sup>2</sup><i>q</i> by Finding Small Solutions of the Equation <i>e</i><i>r</i> − (<i>N</i><i>s</i> + <i>t</i>) = <i>α</i><i>p</i><sup>2</sup> + <i>β</i><i>q</i><sup>2</sup> |
title_sort |
factoring the modulus of type <i>n</i> = <i>p</i><sup>2</sup><i>q</i> by finding small solutions of the equation <i>e</i><i>r</i> − (<i>n</i><i>s</i> + <i>t</i>) = <i>α</i><i>p</i><sup>2</sup> + <i>β</i><i>q</i><sup>2</sup> |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/5e5ef54cbe1c42108cb03ac6701886d7 |
work_keys_str_mv |
AT muhammadasyrafasbullah factoringthemodulusoftypeiniipisup2supiqibyfindingsmallsolutionsoftheequationieiiriiniisiitiiaiipisup2supibiiqisup2sup AT normahirahnekabdrahman factoringthemodulusoftypeiniipisup2supiqibyfindingsmallsolutionsoftheequationieiiriiniisiitiiaiipisup2supibiiqisup2sup AT muhammadrezalkamelariffin factoringthemodulusoftypeiniipisup2supiqibyfindingsmallsolutionsoftheequationieiiriiniisiitiiaiipisup2supibiiqisup2sup AT nurraidahsalim factoringthemodulusoftypeiniipisup2supiqibyfindingsmallsolutionsoftheequationieiiriiniisiitiiaiipisup2supibiiqisup2sup |
_version_ |
1718411383328997376 |