Factoring the Modulus of Type <i>N</i> = <i>p</i><sup>2</sup><i>q</i> by Finding Small Solutions of the Equation <i>e</i><i>r</i> − (<i>N</i><i>s</i> + <i>t</i>) = <i>α</i><i>p</i><sup>2</sup> + <i>β</i><i>q</i><sup>2</sup>

The modulus of type <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><mo>=</mo><msup><mi>p</mi><mn>2</mn></msup><mi>q</mi>&l...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Muhammad Asyraf Asbullah, Normahirah Nek Abd Rahman, Muhammad Rezal Kamel Ariffin, Nur Raidah Salim
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/5e5ef54cbe1c42108cb03ac6701886d7
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:5e5ef54cbe1c42108cb03ac6701886d7
record_format dspace
spelling oai:doaj.org-article:5e5ef54cbe1c42108cb03ac6701886d72021-11-25T18:17:19ZFactoring the Modulus of Type <i>N</i> = <i>p</i><sup>2</sup><i>q</i> by Finding Small Solutions of the Equation <i>e</i><i>r</i> − (<i>N</i><i>s</i> + <i>t</i>) = <i>α</i><i>p</i><sup>2</sup> + <i>β</i><i>q</i><sup>2</sup>10.3390/math92229312227-7390https://doaj.org/article/5e5ef54cbe1c42108cb03ac6701886d72021-11-01T00:00:00Zhttps://www.mdpi.com/2227-7390/9/22/2931https://doaj.org/toc/2227-7390The modulus of type <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><mo>=</mo><msup><mi>p</mi><mn>2</mn></msup><mi>q</mi></mrow></semantics></math></inline-formula> is often used in many variants of factoring-based cryptosystems due to its ability to fasten the decryption process. Faster decryption is suitable for securing small devices in the Internet of Things (IoT) environment or securing fast-forwarding encryption services used in mobile applications. Taking this into account, the security analysis of such modulus is indeed paramount. This paper presents two cryptanalyses that use new enabling conditions to factor the modulus <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><mo>=</mo><msup><mi>p</mi><mn>2</mn></msup><mi>q</mi></mrow></semantics></math></inline-formula> of the factoring-based cryptosystem. The first cryptanalysis considers a single user with a public key pair <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>e</mi><mo>,</mo><mi>N</mi><mo>)</mo></mrow></semantics></math></inline-formula> related via an arbitrary relation to equation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>e</mi><mi>r</mi><mo>−</mo><mrow><mo>(</mo><mi>N</mi><mi>s</mi><mo>+</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><mi>α</mi><msup><mi>p</mi><mn>2</mn></msup><mo>+</mo><mi>β</mi><msup><mi>q</mi><mn>2</mn></msup></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>r</mi><mo>,</mo><mi>s</mi><mo>,</mo><mi>t</mi></mrow></semantics></math></inline-formula> are unknown parameters. The second cryptanalysis considers two distinct cases in the situation of <i>k</i>-users (i.e., multiple users) for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>≥</mo><mn>2</mn></mrow></semantics></math></inline-formula>, given the instances of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><msub><mi>N</mi><mi>i</mi></msub><mo>,</mo><msub><mi>e</mi><mi>i</mi></msub><mo>)</mo></mrow></semantics></math></inline-formula> where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>k</mi></mrow></semantics></math></inline-formula>. By using the lattice basis reduction algorithm for solving simultaneous Diophantine approximation, the <i>k</i>-instances of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><msub><mi>N</mi><mi>i</mi></msub><mo>,</mo><msub><mi>e</mi><mi>i</mi></msub><mo>)</mo></mrow></semantics></math></inline-formula> can be successfully factored in polynomial time.Muhammad Asyraf AsbullahNormahirah Nek Abd RahmanMuhammad Rezal Kamel AriffinNur Raidah SalimMDPI AGarticlecryptographyIoT securitylattice basis reductionDiophantine approximationpre-quantum cryptographyMathematicsQA1-939ENMathematics, Vol 9, Iss 2931, p 2931 (2021)
institution DOAJ
collection DOAJ
language EN
topic cryptography
IoT security
lattice basis reduction
Diophantine approximation
pre-quantum cryptography
Mathematics
QA1-939
spellingShingle cryptography
IoT security
lattice basis reduction
Diophantine approximation
pre-quantum cryptography
Mathematics
QA1-939
Muhammad Asyraf Asbullah
Normahirah Nek Abd Rahman
Muhammad Rezal Kamel Ariffin
Nur Raidah Salim
Factoring the Modulus of Type <i>N</i> = <i>p</i><sup>2</sup><i>q</i> by Finding Small Solutions of the Equation <i>e</i><i>r</i> − (<i>N</i><i>s</i> + <i>t</i>) = <i>α</i><i>p</i><sup>2</sup> + <i>β</i><i>q</i><sup>2</sup>
description The modulus of type <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><mo>=</mo><msup><mi>p</mi><mn>2</mn></msup><mi>q</mi></mrow></semantics></math></inline-formula> is often used in many variants of factoring-based cryptosystems due to its ability to fasten the decryption process. Faster decryption is suitable for securing small devices in the Internet of Things (IoT) environment or securing fast-forwarding encryption services used in mobile applications. Taking this into account, the security analysis of such modulus is indeed paramount. This paper presents two cryptanalyses that use new enabling conditions to factor the modulus <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><mo>=</mo><msup><mi>p</mi><mn>2</mn></msup><mi>q</mi></mrow></semantics></math></inline-formula> of the factoring-based cryptosystem. The first cryptanalysis considers a single user with a public key pair <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>e</mi><mo>,</mo><mi>N</mi><mo>)</mo></mrow></semantics></math></inline-formula> related via an arbitrary relation to equation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>e</mi><mi>r</mi><mo>−</mo><mrow><mo>(</mo><mi>N</mi><mi>s</mi><mo>+</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><mi>α</mi><msup><mi>p</mi><mn>2</mn></msup><mo>+</mo><mi>β</mi><msup><mi>q</mi><mn>2</mn></msup></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>r</mi><mo>,</mo><mi>s</mi><mo>,</mo><mi>t</mi></mrow></semantics></math></inline-formula> are unknown parameters. The second cryptanalysis considers two distinct cases in the situation of <i>k</i>-users (i.e., multiple users) for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>≥</mo><mn>2</mn></mrow></semantics></math></inline-formula>, given the instances of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><msub><mi>N</mi><mi>i</mi></msub><mo>,</mo><msub><mi>e</mi><mi>i</mi></msub><mo>)</mo></mrow></semantics></math></inline-formula> where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>k</mi></mrow></semantics></math></inline-formula>. By using the lattice basis reduction algorithm for solving simultaneous Diophantine approximation, the <i>k</i>-instances of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><msub><mi>N</mi><mi>i</mi></msub><mo>,</mo><msub><mi>e</mi><mi>i</mi></msub><mo>)</mo></mrow></semantics></math></inline-formula> can be successfully factored in polynomial time.
format article
author Muhammad Asyraf Asbullah
Normahirah Nek Abd Rahman
Muhammad Rezal Kamel Ariffin
Nur Raidah Salim
author_facet Muhammad Asyraf Asbullah
Normahirah Nek Abd Rahman
Muhammad Rezal Kamel Ariffin
Nur Raidah Salim
author_sort Muhammad Asyraf Asbullah
title Factoring the Modulus of Type <i>N</i> = <i>p</i><sup>2</sup><i>q</i> by Finding Small Solutions of the Equation <i>e</i><i>r</i> − (<i>N</i><i>s</i> + <i>t</i>) = <i>α</i><i>p</i><sup>2</sup> + <i>β</i><i>q</i><sup>2</sup>
title_short Factoring the Modulus of Type <i>N</i> = <i>p</i><sup>2</sup><i>q</i> by Finding Small Solutions of the Equation <i>e</i><i>r</i> − (<i>N</i><i>s</i> + <i>t</i>) = <i>α</i><i>p</i><sup>2</sup> + <i>β</i><i>q</i><sup>2</sup>
title_full Factoring the Modulus of Type <i>N</i> = <i>p</i><sup>2</sup><i>q</i> by Finding Small Solutions of the Equation <i>e</i><i>r</i> − (<i>N</i><i>s</i> + <i>t</i>) = <i>α</i><i>p</i><sup>2</sup> + <i>β</i><i>q</i><sup>2</sup>
title_fullStr Factoring the Modulus of Type <i>N</i> = <i>p</i><sup>2</sup><i>q</i> by Finding Small Solutions of the Equation <i>e</i><i>r</i> − (<i>N</i><i>s</i> + <i>t</i>) = <i>α</i><i>p</i><sup>2</sup> + <i>β</i><i>q</i><sup>2</sup>
title_full_unstemmed Factoring the Modulus of Type <i>N</i> = <i>p</i><sup>2</sup><i>q</i> by Finding Small Solutions of the Equation <i>e</i><i>r</i> − (<i>N</i><i>s</i> + <i>t</i>) = <i>α</i><i>p</i><sup>2</sup> + <i>β</i><i>q</i><sup>2</sup>
title_sort factoring the modulus of type <i>n</i> = <i>p</i><sup>2</sup><i>q</i> by finding small solutions of the equation <i>e</i><i>r</i> − (<i>n</i><i>s</i> + <i>t</i>) = <i>α</i><i>p</i><sup>2</sup> + <i>β</i><i>q</i><sup>2</sup>
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/5e5ef54cbe1c42108cb03ac6701886d7
work_keys_str_mv AT muhammadasyrafasbullah factoringthemodulusoftypeiniipisup2supiqibyfindingsmallsolutionsoftheequationieiiriiniisiitiiaiipisup2supibiiqisup2sup
AT normahirahnekabdrahman factoringthemodulusoftypeiniipisup2supiqibyfindingsmallsolutionsoftheequationieiiriiniisiitiiaiipisup2supibiiqisup2sup
AT muhammadrezalkamelariffin factoringthemodulusoftypeiniipisup2supiqibyfindingsmallsolutionsoftheequationieiiriiniisiitiiaiipisup2supibiiqisup2sup
AT nurraidahsalim factoringthemodulusoftypeiniipisup2supiqibyfindingsmallsolutionsoftheequationieiiriiniisiitiiaiipisup2supibiiqisup2sup
_version_ 1718411383328997376