Analysis of substrate specificity and kinetics of cyclic nucleotide phosphodiesterases with N'-methylanthraniloyl-substituted purine and pyrimidine 3',5'-cyclic nucleotides by fluorescence spectrometry.

As second messengers, the cyclic purine nucleotides adenosine 3',5'-cyclic monophosphate (cAMP) and guanosine 3',5'-cyclic monophosphate (cGMP) play an essential role in intracellular signaling. Recent data suggest that the cyclic pyrimidine nucleotides cytidine 3',5'-c...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Daniel Reinecke, Frank Schwede, Hans-Gottfried Genieser, Roland Seifert
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2013
Materias:
R
Q
Acceso en línea:https://doaj.org/article/5e722d6db7794d5e9e93f0bfa3bea681
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:5e722d6db7794d5e9e93f0bfa3bea681
record_format dspace
spelling oai:doaj.org-article:5e722d6db7794d5e9e93f0bfa3bea6812021-11-18T08:01:31ZAnalysis of substrate specificity and kinetics of cyclic nucleotide phosphodiesterases with N'-methylanthraniloyl-substituted purine and pyrimidine 3',5'-cyclic nucleotides by fluorescence spectrometry.1932-620310.1371/journal.pone.0054158https://doaj.org/article/5e722d6db7794d5e9e93f0bfa3bea6812013-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/23342095/?tool=EBIhttps://doaj.org/toc/1932-6203As second messengers, the cyclic purine nucleotides adenosine 3',5'-cyclic monophosphate (cAMP) and guanosine 3',5'-cyclic monophosphate (cGMP) play an essential role in intracellular signaling. Recent data suggest that the cyclic pyrimidine nucleotides cytidine 3',5'-cyclic monophosphate (cCMP) and uridine 3',5'-cyclic monophosphate (cUMP) also act as second messengers. Hydrolysis by phosphodiesterases (PDEs) is the most important degradation mechanism for cAMP and cGMP. Elimination of cUMP and cCMP is not completely understood, though. We have shown that human PDEs hydrolyze not only cAMP and cGMP but also cyclic pyrimidine nucleotides, indicating that these enzymes may be important for termination of cCMP- and cUMP effects as well. However, these findings were acquired using a rather expensive HPLC/mass spectrometry assay, the technical requirements of which are available only to few laboratories. N'-Methylanthraniloyl-(MANT-)labeled nucleotides are endogenously fluorescent and suitable tools to study diverse protein/nucleotide interactions. In the present study, we report the synthesis of new MANT-substituted cyclic purine- and pyrimidine nucleotides that are appropriate to analyze substrate specificity and kinetics of PDEs with more moderate technical requirements. MANT-labeled nucleoside 3',5'-cyclic monophosphates (MANT-cNMPs) are shown to be substrates of various human PDEs and to undergo a significant change in fluorescence upon cleavage, thus allowing direct, quantitative and continuous determination of hydrolysis via fluorescence detection. As substrates of several PDEs, MANT-cNMPs show similar kinetics to native nucleotides, with some exceptions. Finally, they are shown to be also appropriate tools for PDE inhibitor studies.Daniel ReineckeFrank SchwedeHans-Gottfried GenieserRoland SeifertPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 8, Iss 1, p e54158 (2013)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Daniel Reinecke
Frank Schwede
Hans-Gottfried Genieser
Roland Seifert
Analysis of substrate specificity and kinetics of cyclic nucleotide phosphodiesterases with N'-methylanthraniloyl-substituted purine and pyrimidine 3',5'-cyclic nucleotides by fluorescence spectrometry.
description As second messengers, the cyclic purine nucleotides adenosine 3',5'-cyclic monophosphate (cAMP) and guanosine 3',5'-cyclic monophosphate (cGMP) play an essential role in intracellular signaling. Recent data suggest that the cyclic pyrimidine nucleotides cytidine 3',5'-cyclic monophosphate (cCMP) and uridine 3',5'-cyclic monophosphate (cUMP) also act as second messengers. Hydrolysis by phosphodiesterases (PDEs) is the most important degradation mechanism for cAMP and cGMP. Elimination of cUMP and cCMP is not completely understood, though. We have shown that human PDEs hydrolyze not only cAMP and cGMP but also cyclic pyrimidine nucleotides, indicating that these enzymes may be important for termination of cCMP- and cUMP effects as well. However, these findings were acquired using a rather expensive HPLC/mass spectrometry assay, the technical requirements of which are available only to few laboratories. N'-Methylanthraniloyl-(MANT-)labeled nucleotides are endogenously fluorescent and suitable tools to study diverse protein/nucleotide interactions. In the present study, we report the synthesis of new MANT-substituted cyclic purine- and pyrimidine nucleotides that are appropriate to analyze substrate specificity and kinetics of PDEs with more moderate technical requirements. MANT-labeled nucleoside 3',5'-cyclic monophosphates (MANT-cNMPs) are shown to be substrates of various human PDEs and to undergo a significant change in fluorescence upon cleavage, thus allowing direct, quantitative and continuous determination of hydrolysis via fluorescence detection. As substrates of several PDEs, MANT-cNMPs show similar kinetics to native nucleotides, with some exceptions. Finally, they are shown to be also appropriate tools for PDE inhibitor studies.
format article
author Daniel Reinecke
Frank Schwede
Hans-Gottfried Genieser
Roland Seifert
author_facet Daniel Reinecke
Frank Schwede
Hans-Gottfried Genieser
Roland Seifert
author_sort Daniel Reinecke
title Analysis of substrate specificity and kinetics of cyclic nucleotide phosphodiesterases with N'-methylanthraniloyl-substituted purine and pyrimidine 3',5'-cyclic nucleotides by fluorescence spectrometry.
title_short Analysis of substrate specificity and kinetics of cyclic nucleotide phosphodiesterases with N'-methylanthraniloyl-substituted purine and pyrimidine 3',5'-cyclic nucleotides by fluorescence spectrometry.
title_full Analysis of substrate specificity and kinetics of cyclic nucleotide phosphodiesterases with N'-methylanthraniloyl-substituted purine and pyrimidine 3',5'-cyclic nucleotides by fluorescence spectrometry.
title_fullStr Analysis of substrate specificity and kinetics of cyclic nucleotide phosphodiesterases with N'-methylanthraniloyl-substituted purine and pyrimidine 3',5'-cyclic nucleotides by fluorescence spectrometry.
title_full_unstemmed Analysis of substrate specificity and kinetics of cyclic nucleotide phosphodiesterases with N'-methylanthraniloyl-substituted purine and pyrimidine 3',5'-cyclic nucleotides by fluorescence spectrometry.
title_sort analysis of substrate specificity and kinetics of cyclic nucleotide phosphodiesterases with n'-methylanthraniloyl-substituted purine and pyrimidine 3',5'-cyclic nucleotides by fluorescence spectrometry.
publisher Public Library of Science (PLoS)
publishDate 2013
url https://doaj.org/article/5e722d6db7794d5e9e93f0bfa3bea681
work_keys_str_mv AT danielreinecke analysisofsubstratespecificityandkineticsofcyclicnucleotidephosphodiesteraseswithnmethylanthraniloylsubstitutedpurineandpyrimidine35cyclicnucleotidesbyfluorescencespectrometry
AT frankschwede analysisofsubstratespecificityandkineticsofcyclicnucleotidephosphodiesteraseswithnmethylanthraniloylsubstitutedpurineandpyrimidine35cyclicnucleotidesbyfluorescencespectrometry
AT hansgottfriedgenieser analysisofsubstratespecificityandkineticsofcyclicnucleotidephosphodiesteraseswithnmethylanthraniloylsubstitutedpurineandpyrimidine35cyclicnucleotidesbyfluorescencespectrometry
AT rolandseifert analysisofsubstratespecificityandkineticsofcyclicnucleotidephosphodiesteraseswithnmethylanthraniloylsubstitutedpurineandpyrimidine35cyclicnucleotidesbyfluorescencespectrometry
_version_ 1718422605028917248