Exactly solvable model for a velocity jump observed in crack propagation in viscoelastic solids
Abstract Needs to impart appropriate elasticity and high toughness to viscoelastic polymer materials are ubiquitous in industries such as concerning automobiles and medical devices. One of the major problems to overcome for toughening is catastrophic failure linked to a velocity jump, i.e., a sharp...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5e75dfa05db643aeb61bbfaa0808c090 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Needs to impart appropriate elasticity and high toughness to viscoelastic polymer materials are ubiquitous in industries such as concerning automobiles and medical devices. One of the major problems to overcome for toughening is catastrophic failure linked to a velocity jump, i.e., a sharp transition in the velocity of crack propagation occurred in a narrow range of the applied load. However, its physical origin has remained an enigma despite previous studies over 60 years. Here, we propose an exactly solvable model that exhibits the velocity jump incorporating linear viscoelasticity with a cutoff length for a continuum description. With the exact solution, we elucidate the physical origin of the velocity jump: it emerges from a dynamic glass transition in the vicinity of the propagating crack tip. We further quantify the velocity jump together with slow- and fast-velocity regimes of crack propagation, which would stimulate the development of tough polymer materials. |
---|