Lack of detectable HIV-1 molecular evolution during suppressive antiretroviral therapy.
A better understanding of changes in HIV-1 population genetics with combination antiretroviral therapy (cART) is critical for designing eradication strategies. We therefore analyzed HIV-1 genetic variation and divergence in patients' plasma before cART, during suppression on cART, and after vir...
Guardado en:
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2014
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5e79a5c84d0242e3801880d4e7d8f9e4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:5e79a5c84d0242e3801880d4e7d8f9e4 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:5e79a5c84d0242e3801880d4e7d8f9e42021-11-18T06:06:49ZLack of detectable HIV-1 molecular evolution during suppressive antiretroviral therapy.1553-73661553-737410.1371/journal.ppat.1004010https://doaj.org/article/5e79a5c84d0242e3801880d4e7d8f9e42014-03-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/24651464/?tool=EBIhttps://doaj.org/toc/1553-7366https://doaj.org/toc/1553-7374A better understanding of changes in HIV-1 population genetics with combination antiretroviral therapy (cART) is critical for designing eradication strategies. We therefore analyzed HIV-1 genetic variation and divergence in patients' plasma before cART, during suppression on cART, and after viral rebound. Single-genome sequences of plasma HIV-1 RNA were obtained from HIV-1 infected patients prior to cART (N = 14), during suppression on cART (N = 14) and/or after viral rebound following interruption of cART (N = 5). Intra-patient population diversity was measured by average pairwise difference (APD). Population structure was assessed by phylogenetic analyses and a test for panmixia. Measurements of intra-population diversity revealed no significant loss of overall genetic variation in patients treated for up to 15 years with cART. A test for panmixia, however, showed significant changes in population structure in 2/10 patients after short-term cART (<1 year) and in 7/10 patients after long-term cART (1-15 years). The changes consisted of diverse sets of viral variants prior to cART shifting to populations containing one or more genetically uniform subpopulations during cART. Despite these significant changes in population structure, rebound virus after long-term cART had little divergence from pretherapy virus, implicating long-lived cells infected before cART as the source for rebound virus. The appearance of genetically uniform virus populations and the lack of divergence after prolonged cART and cART interruption provide strong evidence that HIV-1 persists in long-lived cells infected before cART was initiated, that some of these infected cells may be capable of proliferation, and that on-going cycles of viral replication are not evident.Mary F KearneyJonathan SpindlerWei ShaoSloane YuElizabeth M AndersonAngeline O'SheaCatherine RehmCarry PoethkeNicholas KovacsJohn W MellorsJohn M CoffinFrank MaldarelliPublic Library of Science (PLoS)articleImmunologic diseases. AllergyRC581-607Biology (General)QH301-705.5ENPLoS Pathogens, Vol 10, Iss 3, p e1004010 (2014) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Immunologic diseases. Allergy RC581-607 Biology (General) QH301-705.5 |
spellingShingle |
Immunologic diseases. Allergy RC581-607 Biology (General) QH301-705.5 Mary F Kearney Jonathan Spindler Wei Shao Sloane Yu Elizabeth M Anderson Angeline O'Shea Catherine Rehm Carry Poethke Nicholas Kovacs John W Mellors John M Coffin Frank Maldarelli Lack of detectable HIV-1 molecular evolution during suppressive antiretroviral therapy. |
description |
A better understanding of changes in HIV-1 population genetics with combination antiretroviral therapy (cART) is critical for designing eradication strategies. We therefore analyzed HIV-1 genetic variation and divergence in patients' plasma before cART, during suppression on cART, and after viral rebound. Single-genome sequences of plasma HIV-1 RNA were obtained from HIV-1 infected patients prior to cART (N = 14), during suppression on cART (N = 14) and/or after viral rebound following interruption of cART (N = 5). Intra-patient population diversity was measured by average pairwise difference (APD). Population structure was assessed by phylogenetic analyses and a test for panmixia. Measurements of intra-population diversity revealed no significant loss of overall genetic variation in patients treated for up to 15 years with cART. A test for panmixia, however, showed significant changes in population structure in 2/10 patients after short-term cART (<1 year) and in 7/10 patients after long-term cART (1-15 years). The changes consisted of diverse sets of viral variants prior to cART shifting to populations containing one or more genetically uniform subpopulations during cART. Despite these significant changes in population structure, rebound virus after long-term cART had little divergence from pretherapy virus, implicating long-lived cells infected before cART as the source for rebound virus. The appearance of genetically uniform virus populations and the lack of divergence after prolonged cART and cART interruption provide strong evidence that HIV-1 persists in long-lived cells infected before cART was initiated, that some of these infected cells may be capable of proliferation, and that on-going cycles of viral replication are not evident. |
format |
article |
author |
Mary F Kearney Jonathan Spindler Wei Shao Sloane Yu Elizabeth M Anderson Angeline O'Shea Catherine Rehm Carry Poethke Nicholas Kovacs John W Mellors John M Coffin Frank Maldarelli |
author_facet |
Mary F Kearney Jonathan Spindler Wei Shao Sloane Yu Elizabeth M Anderson Angeline O'Shea Catherine Rehm Carry Poethke Nicholas Kovacs John W Mellors John M Coffin Frank Maldarelli |
author_sort |
Mary F Kearney |
title |
Lack of detectable HIV-1 molecular evolution during suppressive antiretroviral therapy. |
title_short |
Lack of detectable HIV-1 molecular evolution during suppressive antiretroviral therapy. |
title_full |
Lack of detectable HIV-1 molecular evolution during suppressive antiretroviral therapy. |
title_fullStr |
Lack of detectable HIV-1 molecular evolution during suppressive antiretroviral therapy. |
title_full_unstemmed |
Lack of detectable HIV-1 molecular evolution during suppressive antiretroviral therapy. |
title_sort |
lack of detectable hiv-1 molecular evolution during suppressive antiretroviral therapy. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2014 |
url |
https://doaj.org/article/5e79a5c84d0242e3801880d4e7d8f9e4 |
work_keys_str_mv |
AT maryfkearney lackofdetectablehiv1molecularevolutionduringsuppressiveantiretroviraltherapy AT jonathanspindler lackofdetectablehiv1molecularevolutionduringsuppressiveantiretroviraltherapy AT weishao lackofdetectablehiv1molecularevolutionduringsuppressiveantiretroviraltherapy AT sloaneyu lackofdetectablehiv1molecularevolutionduringsuppressiveantiretroviraltherapy AT elizabethmanderson lackofdetectablehiv1molecularevolutionduringsuppressiveantiretroviraltherapy AT angelineoshea lackofdetectablehiv1molecularevolutionduringsuppressiveantiretroviraltherapy AT catherinerehm lackofdetectablehiv1molecularevolutionduringsuppressiveantiretroviraltherapy AT carrypoethke lackofdetectablehiv1molecularevolutionduringsuppressiveantiretroviraltherapy AT nicholaskovacs lackofdetectablehiv1molecularevolutionduringsuppressiveantiretroviraltherapy AT johnwmellors lackofdetectablehiv1molecularevolutionduringsuppressiveantiretroviraltherapy AT johnmcoffin lackofdetectablehiv1molecularevolutionduringsuppressiveantiretroviraltherapy AT frankmaldarelli lackofdetectablehiv1molecularevolutionduringsuppressiveantiretroviraltherapy |
_version_ |
1718424540555509760 |