Encoding of spatio-temporal input characteristics by a CA1 pyramidal neuron model.
The in vivo activity of CA1 pyramidal neurons alternates between regular spiking and bursting, but how these changes affect information processing remains unclear. Using a detailed CA1 pyramidal neuron model, we investigate how timing and spatial arrangement variations in synaptic inputs to the dist...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2010
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5e7d4bb26ae54a6babffa294beb3e6dd |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:5e7d4bb26ae54a6babffa294beb3e6dd |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:5e7d4bb26ae54a6babffa294beb3e6dd2021-11-18T05:50:49ZEncoding of spatio-temporal input characteristics by a CA1 pyramidal neuron model.1553-734X1553-735810.1371/journal.pcbi.1001038https://doaj.org/article/5e7d4bb26ae54a6babffa294beb3e6dd2010-12-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/21187899/?tool=EBIhttps://doaj.org/toc/1553-734Xhttps://doaj.org/toc/1553-7358The in vivo activity of CA1 pyramidal neurons alternates between regular spiking and bursting, but how these changes affect information processing remains unclear. Using a detailed CA1 pyramidal neuron model, we investigate how timing and spatial arrangement variations in synaptic inputs to the distal and proximal dendritic layers influence the information content of model responses. We find that the temporal delay between activation of the two layers acts as a switch between excitability modes: short delays induce bursting while long delays decrease firing. For long delays, the average firing frequency of the model response discriminates spatially clustered from diffused inputs to the distal dendritic tree. For short delays, the onset latency and inter-spike-interval succession of model responses can accurately classify input signals as temporally close or distant and spatially clustered or diffused across different stimulation protocols. These findings suggest that a CA1 pyramidal neuron may be capable of encoding and transmitting presynaptic spatiotemporal information about the activity of the entorhinal cortex-hippocampal network to higher brain regions via the selective use of either a temporal or a rate code.Eleftheria Kyriaki PissadakiKyriaki SidiropoulouMartin ReczkoPanayiota PoiraziPublic Library of Science (PLoS)articleBiology (General)QH301-705.5ENPLoS Computational Biology, Vol 6, Iss 12, p e1001038 (2010) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Biology (General) QH301-705.5 |
spellingShingle |
Biology (General) QH301-705.5 Eleftheria Kyriaki Pissadaki Kyriaki Sidiropoulou Martin Reczko Panayiota Poirazi Encoding of spatio-temporal input characteristics by a CA1 pyramidal neuron model. |
description |
The in vivo activity of CA1 pyramidal neurons alternates between regular spiking and bursting, but how these changes affect information processing remains unclear. Using a detailed CA1 pyramidal neuron model, we investigate how timing and spatial arrangement variations in synaptic inputs to the distal and proximal dendritic layers influence the information content of model responses. We find that the temporal delay between activation of the two layers acts as a switch between excitability modes: short delays induce bursting while long delays decrease firing. For long delays, the average firing frequency of the model response discriminates spatially clustered from diffused inputs to the distal dendritic tree. For short delays, the onset latency and inter-spike-interval succession of model responses can accurately classify input signals as temporally close or distant and spatially clustered or diffused across different stimulation protocols. These findings suggest that a CA1 pyramidal neuron may be capable of encoding and transmitting presynaptic spatiotemporal information about the activity of the entorhinal cortex-hippocampal network to higher brain regions via the selective use of either a temporal or a rate code. |
format |
article |
author |
Eleftheria Kyriaki Pissadaki Kyriaki Sidiropoulou Martin Reczko Panayiota Poirazi |
author_facet |
Eleftheria Kyriaki Pissadaki Kyriaki Sidiropoulou Martin Reczko Panayiota Poirazi |
author_sort |
Eleftheria Kyriaki Pissadaki |
title |
Encoding of spatio-temporal input characteristics by a CA1 pyramidal neuron model. |
title_short |
Encoding of spatio-temporal input characteristics by a CA1 pyramidal neuron model. |
title_full |
Encoding of spatio-temporal input characteristics by a CA1 pyramidal neuron model. |
title_fullStr |
Encoding of spatio-temporal input characteristics by a CA1 pyramidal neuron model. |
title_full_unstemmed |
Encoding of spatio-temporal input characteristics by a CA1 pyramidal neuron model. |
title_sort |
encoding of spatio-temporal input characteristics by a ca1 pyramidal neuron model. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2010 |
url |
https://doaj.org/article/5e7d4bb26ae54a6babffa294beb3e6dd |
work_keys_str_mv |
AT eleftheriakyriakipissadaki encodingofspatiotemporalinputcharacteristicsbyaca1pyramidalneuronmodel AT kyriakisidiropoulou encodingofspatiotemporalinputcharacteristicsbyaca1pyramidalneuronmodel AT martinreczko encodingofspatiotemporalinputcharacteristicsbyaca1pyramidalneuronmodel AT panayiotapoirazi encodingofspatiotemporalinputcharacteristicsbyaca1pyramidalneuronmodel |
_version_ |
1718424788278444032 |