Encoding of spatio-temporal input characteristics by a CA1 pyramidal neuron model.

The in vivo activity of CA1 pyramidal neurons alternates between regular spiking and bursting, but how these changes affect information processing remains unclear. Using a detailed CA1 pyramidal neuron model, we investigate how timing and spatial arrangement variations in synaptic inputs to the dist...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Eleftheria Kyriaki Pissadaki, Kyriaki Sidiropoulou, Martin Reczko, Panayiota Poirazi
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2010
Materias:
Acceso en línea:https://doaj.org/article/5e7d4bb26ae54a6babffa294beb3e6dd
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:5e7d4bb26ae54a6babffa294beb3e6dd
record_format dspace
spelling oai:doaj.org-article:5e7d4bb26ae54a6babffa294beb3e6dd2021-11-18T05:50:49ZEncoding of spatio-temporal input characteristics by a CA1 pyramidal neuron model.1553-734X1553-735810.1371/journal.pcbi.1001038https://doaj.org/article/5e7d4bb26ae54a6babffa294beb3e6dd2010-12-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/21187899/?tool=EBIhttps://doaj.org/toc/1553-734Xhttps://doaj.org/toc/1553-7358The in vivo activity of CA1 pyramidal neurons alternates between regular spiking and bursting, but how these changes affect information processing remains unclear. Using a detailed CA1 pyramidal neuron model, we investigate how timing and spatial arrangement variations in synaptic inputs to the distal and proximal dendritic layers influence the information content of model responses. We find that the temporal delay between activation of the two layers acts as a switch between excitability modes: short delays induce bursting while long delays decrease firing. For long delays, the average firing frequency of the model response discriminates spatially clustered from diffused inputs to the distal dendritic tree. For short delays, the onset latency and inter-spike-interval succession of model responses can accurately classify input signals as temporally close or distant and spatially clustered or diffused across different stimulation protocols. These findings suggest that a CA1 pyramidal neuron may be capable of encoding and transmitting presynaptic spatiotemporal information about the activity of the entorhinal cortex-hippocampal network to higher brain regions via the selective use of either a temporal or a rate code.Eleftheria Kyriaki PissadakiKyriaki SidiropoulouMartin ReczkoPanayiota PoiraziPublic Library of Science (PLoS)articleBiology (General)QH301-705.5ENPLoS Computational Biology, Vol 6, Iss 12, p e1001038 (2010)
institution DOAJ
collection DOAJ
language EN
topic Biology (General)
QH301-705.5
spellingShingle Biology (General)
QH301-705.5
Eleftheria Kyriaki Pissadaki
Kyriaki Sidiropoulou
Martin Reczko
Panayiota Poirazi
Encoding of spatio-temporal input characteristics by a CA1 pyramidal neuron model.
description The in vivo activity of CA1 pyramidal neurons alternates between regular spiking and bursting, but how these changes affect information processing remains unclear. Using a detailed CA1 pyramidal neuron model, we investigate how timing and spatial arrangement variations in synaptic inputs to the distal and proximal dendritic layers influence the information content of model responses. We find that the temporal delay between activation of the two layers acts as a switch between excitability modes: short delays induce bursting while long delays decrease firing. For long delays, the average firing frequency of the model response discriminates spatially clustered from diffused inputs to the distal dendritic tree. For short delays, the onset latency and inter-spike-interval succession of model responses can accurately classify input signals as temporally close or distant and spatially clustered or diffused across different stimulation protocols. These findings suggest that a CA1 pyramidal neuron may be capable of encoding and transmitting presynaptic spatiotemporal information about the activity of the entorhinal cortex-hippocampal network to higher brain regions via the selective use of either a temporal or a rate code.
format article
author Eleftheria Kyriaki Pissadaki
Kyriaki Sidiropoulou
Martin Reczko
Panayiota Poirazi
author_facet Eleftheria Kyriaki Pissadaki
Kyriaki Sidiropoulou
Martin Reczko
Panayiota Poirazi
author_sort Eleftheria Kyriaki Pissadaki
title Encoding of spatio-temporal input characteristics by a CA1 pyramidal neuron model.
title_short Encoding of spatio-temporal input characteristics by a CA1 pyramidal neuron model.
title_full Encoding of spatio-temporal input characteristics by a CA1 pyramidal neuron model.
title_fullStr Encoding of spatio-temporal input characteristics by a CA1 pyramidal neuron model.
title_full_unstemmed Encoding of spatio-temporal input characteristics by a CA1 pyramidal neuron model.
title_sort encoding of spatio-temporal input characteristics by a ca1 pyramidal neuron model.
publisher Public Library of Science (PLoS)
publishDate 2010
url https://doaj.org/article/5e7d4bb26ae54a6babffa294beb3e6dd
work_keys_str_mv AT eleftheriakyriakipissadaki encodingofspatiotemporalinputcharacteristicsbyaca1pyramidalneuronmodel
AT kyriakisidiropoulou encodingofspatiotemporalinputcharacteristicsbyaca1pyramidalneuronmodel
AT martinreczko encodingofspatiotemporalinputcharacteristicsbyaca1pyramidalneuronmodel
AT panayiotapoirazi encodingofspatiotemporalinputcharacteristicsbyaca1pyramidalneuronmodel
_version_ 1718424788278444032