Optofluidic device for the quantification of circulating tumor cells in breast cancer

Metastatic cancer patients require a continuous monitoring during the sequential treatment cycles to carefully evaluate their disease evolution. Repetition of biopsies is very invasive and not always feasible. Herein, we design and demonstrate a 3D-flow focusing microfluidic device, where all optics...

Full description

Saved in:
Bibliographic Details
Main Authors: Eric Pedrol, Manuel Garcia-Algar, Jaume Massons, Moritz Nazarenus, Luca Guerrini, Javier Martínez, Airan Rodenas, Ana Fernandez-Carrascal, Magdalena Aguiló, Laura G. Estevez, Isabel Calvo, Ana Olano-Daza, Eduardo Garcia-Rico, Francesc Díaz, Ramon A. Alvarez-Puebla
Format: article
Language:EN
Published: Nature Portfolio 2017
Subjects:
R
Q
Online Access:https://doaj.org/article/5e7ef0a2e645437eb3463b68c9d01e45
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Metastatic cancer patients require a continuous monitoring during the sequential treatment cycles to carefully evaluate their disease evolution. Repetition of biopsies is very invasive and not always feasible. Herein, we design and demonstrate a 3D-flow focusing microfluidic device, where all optics are integrated into the chip, for the fluorescence quantification of CTCs in real samples. To test the chip performance, two cell membrane targets, the epithelial cell adhesion molecule, EpCAM, and the receptor tyrosine-protein kinase, HER2, are selected. The efficiency of the platform is demonstrated on cell lines and in a variety of healthy donors and metastatic-breast cancer patients.