A hybrid modeling approach for assessing mechanistic models of small molecule partitioning in vivo using a machine learning-integrated modeling platform

Abstract Prediction of the first-in-human dosing regimens is a critical step in drug development and requires accurate quantitation of drug distribution. Traditional in vivo studies used to characterize clinical candidate’s volume of distribution are error-prone, time- and cost-intensive and lack re...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Victor Antontsev, Aditya Jagarapu, Yogesh Bundey, Hypatia Hou, Maksim Khotimchenko, Jason Walsh, Jyotika Varshney
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/5e7fa5ef5904452a887724f1bb44840c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:5e7fa5ef5904452a887724f1bb44840c
record_format dspace
spelling oai:doaj.org-article:5e7fa5ef5904452a887724f1bb44840c2021-12-02T14:42:01ZA hybrid modeling approach for assessing mechanistic models of small molecule partitioning in vivo using a machine learning-integrated modeling platform10.1038/s41598-021-90637-12045-2322https://doaj.org/article/5e7fa5ef5904452a887724f1bb44840c2021-05-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-90637-1https://doaj.org/toc/2045-2322Abstract Prediction of the first-in-human dosing regimens is a critical step in drug development and requires accurate quantitation of drug distribution. Traditional in vivo studies used to characterize clinical candidate’s volume of distribution are error-prone, time- and cost-intensive and lack reproducibility in clinical settings. The paper demonstrates how a computational platform integrating machine learning optimization with mechanistic modeling can be used to simulate compound plasma concentration profile and predict tissue-plasma partition coefficients with high accuracy by varying the lipophilicity descriptor logP. The approach applied to chemically diverse small molecules resulted in comparable geometric mean fold-errors of 1.50 and 1.63 in pharmacokinetic outputs for direct tissue:plasma partition and hybrid logP optimization, with the latter enabling prediction of tissue permeation that can be used to guide toxicity and efficacy dosing in human subjects. The optimization simulations required to achieve these results were parallelized on the AWS cloud and generated outputs in under 5 h. Accuracy, speed, and scalability of the framework indicate that it can be used to assess the relevance of other mechanistic relationships implicated in pharmacokinetic-pharmacodynamic phenomena with a lower risk of overfitting datasets and generate large database of physiologically-relevant drug disposition for further integration with machine learning models.Victor AntontsevAditya JagarapuYogesh BundeyHypatia HouMaksim KhotimchenkoJason WalshJyotika VarshneyNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-14 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Victor Antontsev
Aditya Jagarapu
Yogesh Bundey
Hypatia Hou
Maksim Khotimchenko
Jason Walsh
Jyotika Varshney
A hybrid modeling approach for assessing mechanistic models of small molecule partitioning in vivo using a machine learning-integrated modeling platform
description Abstract Prediction of the first-in-human dosing regimens is a critical step in drug development and requires accurate quantitation of drug distribution. Traditional in vivo studies used to characterize clinical candidate’s volume of distribution are error-prone, time- and cost-intensive and lack reproducibility in clinical settings. The paper demonstrates how a computational platform integrating machine learning optimization with mechanistic modeling can be used to simulate compound plasma concentration profile and predict tissue-plasma partition coefficients with high accuracy by varying the lipophilicity descriptor logP. The approach applied to chemically diverse small molecules resulted in comparable geometric mean fold-errors of 1.50 and 1.63 in pharmacokinetic outputs for direct tissue:plasma partition and hybrid logP optimization, with the latter enabling prediction of tissue permeation that can be used to guide toxicity and efficacy dosing in human subjects. The optimization simulations required to achieve these results were parallelized on the AWS cloud and generated outputs in under 5 h. Accuracy, speed, and scalability of the framework indicate that it can be used to assess the relevance of other mechanistic relationships implicated in pharmacokinetic-pharmacodynamic phenomena with a lower risk of overfitting datasets and generate large database of physiologically-relevant drug disposition for further integration with machine learning models.
format article
author Victor Antontsev
Aditya Jagarapu
Yogesh Bundey
Hypatia Hou
Maksim Khotimchenko
Jason Walsh
Jyotika Varshney
author_facet Victor Antontsev
Aditya Jagarapu
Yogesh Bundey
Hypatia Hou
Maksim Khotimchenko
Jason Walsh
Jyotika Varshney
author_sort Victor Antontsev
title A hybrid modeling approach for assessing mechanistic models of small molecule partitioning in vivo using a machine learning-integrated modeling platform
title_short A hybrid modeling approach for assessing mechanistic models of small molecule partitioning in vivo using a machine learning-integrated modeling platform
title_full A hybrid modeling approach for assessing mechanistic models of small molecule partitioning in vivo using a machine learning-integrated modeling platform
title_fullStr A hybrid modeling approach for assessing mechanistic models of small molecule partitioning in vivo using a machine learning-integrated modeling platform
title_full_unstemmed A hybrid modeling approach for assessing mechanistic models of small molecule partitioning in vivo using a machine learning-integrated modeling platform
title_sort hybrid modeling approach for assessing mechanistic models of small molecule partitioning in vivo using a machine learning-integrated modeling platform
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/5e7fa5ef5904452a887724f1bb44840c
work_keys_str_mv AT victorantontsev ahybridmodelingapproachforassessingmechanisticmodelsofsmallmoleculepartitioninginvivousingamachinelearningintegratedmodelingplatform
AT adityajagarapu ahybridmodelingapproachforassessingmechanisticmodelsofsmallmoleculepartitioninginvivousingamachinelearningintegratedmodelingplatform
AT yogeshbundey ahybridmodelingapproachforassessingmechanisticmodelsofsmallmoleculepartitioninginvivousingamachinelearningintegratedmodelingplatform
AT hypatiahou ahybridmodelingapproachforassessingmechanisticmodelsofsmallmoleculepartitioninginvivousingamachinelearningintegratedmodelingplatform
AT maksimkhotimchenko ahybridmodelingapproachforassessingmechanisticmodelsofsmallmoleculepartitioninginvivousingamachinelearningintegratedmodelingplatform
AT jasonwalsh ahybridmodelingapproachforassessingmechanisticmodelsofsmallmoleculepartitioninginvivousingamachinelearningintegratedmodelingplatform
AT jyotikavarshney ahybridmodelingapproachforassessingmechanisticmodelsofsmallmoleculepartitioninginvivousingamachinelearningintegratedmodelingplatform
AT victorantontsev hybridmodelingapproachforassessingmechanisticmodelsofsmallmoleculepartitioninginvivousingamachinelearningintegratedmodelingplatform
AT adityajagarapu hybridmodelingapproachforassessingmechanisticmodelsofsmallmoleculepartitioninginvivousingamachinelearningintegratedmodelingplatform
AT yogeshbundey hybridmodelingapproachforassessingmechanisticmodelsofsmallmoleculepartitioninginvivousingamachinelearningintegratedmodelingplatform
AT hypatiahou hybridmodelingapproachforassessingmechanisticmodelsofsmallmoleculepartitioninginvivousingamachinelearningintegratedmodelingplatform
AT maksimkhotimchenko hybridmodelingapproachforassessingmechanisticmodelsofsmallmoleculepartitioninginvivousingamachinelearningintegratedmodelingplatform
AT jasonwalsh hybridmodelingapproachforassessingmechanisticmodelsofsmallmoleculepartitioninginvivousingamachinelearningintegratedmodelingplatform
AT jyotikavarshney hybridmodelingapproachforassessingmechanisticmodelsofsmallmoleculepartitioninginvivousingamachinelearningintegratedmodelingplatform
_version_ 1718389810569150464