Tuning the through-thickness orientation of 1D nanocarbons to enhance the electrical conductivity and ILSS of hierarchical CFRP composites
In this article, we proposed a novel but simple multilayer resin film infusion-compressive molding (MLRFI-CM) manufacturing process that can harness the resin shear flow to architect hierarchical carbon fiber reinforced polymer (CFRP) composites with tunable 1D nanocarbons orientation. Via this nove...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5e878104cba14bdebaed34a2c83cca5e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:5e878104cba14bdebaed34a2c83cca5e |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:5e878104cba14bdebaed34a2c83cca5e2021-12-05T14:11:03ZTuning the through-thickness orientation of 1D nanocarbons to enhance the electrical conductivity and ILSS of hierarchical CFRP composites2191-035910.1515/secm-2021-0040https://doaj.org/article/5e878104cba14bdebaed34a2c83cca5e2021-08-01T00:00:00Zhttps://doi.org/10.1515/secm-2021-0040https://doaj.org/toc/2191-0359In this article, we proposed a novel but simple multilayer resin film infusion-compressive molding (MLRFI-CM) manufacturing process that can harness the resin shear flow to architect hierarchical carbon fiber reinforced polymer (CFRP) composites with tunable 1D nanocarbons orientation. Via this novel process, we demonstrated that the orientation of two typical 1D nanocarbons, namely, the carbon nanotubes (CNTs) and carbon nanofibers (CNFs), can be successfully tuned via altering the infusion time and that the tuning strategy is especially effective toward CNTs. Further, the structure-performance relationships between the electrical conductivity/interlaminar shear strength (ILSS) and filler through-thickness orientation of the hierarchical CFRP composites is explored and compared. In the best case, with only 0.3 wt% of CNTs, the ILSS of CFRP composites revealed an increase of 19.7%, and the through-thickness conductivity demonstrated an increase of 38%.He YonglyuJu SuDuan KeTang JunBai ShuxinJiang DazhiPei YingyingZhang JianweiDe Gruyterarticleorientation tuningelectrical conductivityilssMaterials of engineering and construction. Mechanics of materialsTA401-492ENScience and Engineering of Composite Materials, Vol 28, Iss 1, Pp 453-465 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
orientation tuning electrical conductivity ilss Materials of engineering and construction. Mechanics of materials TA401-492 |
spellingShingle |
orientation tuning electrical conductivity ilss Materials of engineering and construction. Mechanics of materials TA401-492 He Yonglyu Ju Su Duan Ke Tang Jun Bai Shuxin Jiang Dazhi Pei Yingying Zhang Jianwei Tuning the through-thickness orientation of 1D nanocarbons to enhance the electrical conductivity and ILSS of hierarchical CFRP composites |
description |
In this article, we proposed a novel but simple multilayer resin film infusion-compressive molding (MLRFI-CM) manufacturing process that can harness the resin shear flow to architect hierarchical carbon fiber reinforced polymer (CFRP) composites with tunable 1D nanocarbons orientation. Via this novel process, we demonstrated that the orientation of two typical 1D nanocarbons, namely, the carbon nanotubes (CNTs) and carbon nanofibers (CNFs), can be successfully tuned via altering the infusion time and that the tuning strategy is especially effective toward CNTs. Further, the structure-performance relationships between the electrical conductivity/interlaminar shear strength (ILSS) and filler through-thickness orientation of the hierarchical CFRP composites is explored and compared. In the best case, with only 0.3 wt% of CNTs, the ILSS of CFRP composites revealed an increase of 19.7%, and the through-thickness conductivity demonstrated an increase of 38%. |
format |
article |
author |
He Yonglyu Ju Su Duan Ke Tang Jun Bai Shuxin Jiang Dazhi Pei Yingying Zhang Jianwei |
author_facet |
He Yonglyu Ju Su Duan Ke Tang Jun Bai Shuxin Jiang Dazhi Pei Yingying Zhang Jianwei |
author_sort |
He Yonglyu |
title |
Tuning the through-thickness orientation of 1D nanocarbons to enhance the electrical conductivity and ILSS of hierarchical CFRP composites |
title_short |
Tuning the through-thickness orientation of 1D nanocarbons to enhance the electrical conductivity and ILSS of hierarchical CFRP composites |
title_full |
Tuning the through-thickness orientation of 1D nanocarbons to enhance the electrical conductivity and ILSS of hierarchical CFRP composites |
title_fullStr |
Tuning the through-thickness orientation of 1D nanocarbons to enhance the electrical conductivity and ILSS of hierarchical CFRP composites |
title_full_unstemmed |
Tuning the through-thickness orientation of 1D nanocarbons to enhance the electrical conductivity and ILSS of hierarchical CFRP composites |
title_sort |
tuning the through-thickness orientation of 1d nanocarbons to enhance the electrical conductivity and ilss of hierarchical cfrp composites |
publisher |
De Gruyter |
publishDate |
2021 |
url |
https://doaj.org/article/5e878104cba14bdebaed34a2c83cca5e |
work_keys_str_mv |
AT heyonglyu tuningthethroughthicknessorientationof1dnanocarbonstoenhancetheelectricalconductivityandilssofhierarchicalcfrpcomposites AT jusu tuningthethroughthicknessorientationof1dnanocarbonstoenhancetheelectricalconductivityandilssofhierarchicalcfrpcomposites AT duanke tuningthethroughthicknessorientationof1dnanocarbonstoenhancetheelectricalconductivityandilssofhierarchicalcfrpcomposites AT tangjun tuningthethroughthicknessorientationof1dnanocarbonstoenhancetheelectricalconductivityandilssofhierarchicalcfrpcomposites AT baishuxin tuningthethroughthicknessorientationof1dnanocarbonstoenhancetheelectricalconductivityandilssofhierarchicalcfrpcomposites AT jiangdazhi tuningthethroughthicknessorientationof1dnanocarbonstoenhancetheelectricalconductivityandilssofhierarchicalcfrpcomposites AT peiyingying tuningthethroughthicknessorientationof1dnanocarbonstoenhancetheelectricalconductivityandilssofhierarchicalcfrpcomposites AT zhangjianwei tuningthethroughthicknessorientationof1dnanocarbonstoenhancetheelectricalconductivityandilssofhierarchicalcfrpcomposites |
_version_ |
1718371423608635392 |