Reproducing scientists’ mobility: a data-driven model
Abstract High skill labour is an important factor underpinning the competitive advantage of modern economies. Therefore, attracting and retaining scientists has become a major concern for migration policy. In this work, we study the migration of scientists on a global scale, by combining two large d...
Enregistré dans:
Auteurs principaux: | Giacomo Vaccario, Luca Verginer, Frank Schweitzer |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/5e9031a7ca7d4a0791049bacc1f6d9d4 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Reproducible Analysis Pipeline for Data Streams: Open-Source Software to Process Data Collected With Mobile Devices
par: Julio Vega, et autres
Publié: (2021) -
A computational reproducibility study of PLOS ONE articles featuring longitudinal data analyses.
par: Heidi Seibold, et autres
Publié: (2021) -
Mining Google and Apple mobility data: temporal anatomy for COVID-19 social distancing
par: Corentin Cot, et autres
Publié: (2021) -
Data-driven control of complex networks
par: Giacomo Baggio, et autres
Publié: (2021) -
Do food web models reproduce the structure of mutualistic networks?
par: Mathias M Pires, et autres
Publié: (2011)