Mechanism Study of Thermally Induced Anti-Tumor Drug Loading to Engineered Human Heavy-Chain Ferritin Nanocages Aided by Computational Analysis

Diverse drug loading approaches for human heavy-chain ferritin (HFn), a promising drug nanocarrier, have been established. However, anti-tumor drug loading ratio and protein carrier recovery yield are bottlenecks for future clinical application. Mechanisms behind drug loading have not been elaborate...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Shuang Yin, Yongdong Liu, Sheng Dai, Bingyang Zhang, Yiran Qu, Yao Zhang, Woo-Seok Choe, Jingxiu Bi
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/5ea83230122b408290251e6cbc31cf63
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Diverse drug loading approaches for human heavy-chain ferritin (HFn), a promising drug nanocarrier, have been established. However, anti-tumor drug loading ratio and protein carrier recovery yield are bottlenecks for future clinical application. Mechanisms behind drug loading have not been elaborated. In this work, a thermally induced drug loading approach was introduced to load anti-tumor drug doxorubicin hydrochloride (DOX) into HFn, and 2 functionalized HFns, HFn-PAS-RGDK, and HFn-PAS. Optimal conditions were obtained through orthogonal tests. All 3 HFn-based proteins achieved high protein recovery yield and drug loading ratio. Size exclusion chromatography (SEC) and transmission electron microscopy (TEM) results showed the majority of DOX loaded protein (protein/DOX) remained its nanocage conformation. Computational analysis, molecular docking followed by molecular dynamic (MD) simulation, revealed mechanisms of DOX loading and formation of by-product by investigating non-covalent interactions between DOX with HFn subunit and possible binding modes of DOX and HFn after drug loading. In in vitro tests, DOX in protein/DOX entered tumor cell nucleus and inhibited tumor cell growth.