Transcriptomic evidence for versatile metabolic activities of mercury cycling microorganisms in brackish microbial mats

Abstract Methylmercury, biomagnifying through food chains, is highly toxic for aquatic life. Its production and degradation are largely driven by microbial transformations; however, diversity and metabolic activity of mercury transformers, resulting in methylmercury concentrations in environments, r...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Adrien Vigneron, Perrine Cruaud, Johanne Aubé, Rémy Guyoneaud, Marisol Goñi-Urriza
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/5eaa0efa111f45a3b08494bf5e47553b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:5eaa0efa111f45a3b08494bf5e47553b
record_format dspace
spelling oai:doaj.org-article:5eaa0efa111f45a3b08494bf5e47553b2021-11-21T12:26:19ZTranscriptomic evidence for versatile metabolic activities of mercury cycling microorganisms in brackish microbial mats10.1038/s41522-021-00255-y2055-5008https://doaj.org/article/5eaa0efa111f45a3b08494bf5e47553b2021-11-01T00:00:00Zhttps://doi.org/10.1038/s41522-021-00255-yhttps://doaj.org/toc/2055-5008Abstract Methylmercury, biomagnifying through food chains, is highly toxic for aquatic life. Its production and degradation are largely driven by microbial transformations; however, diversity and metabolic activity of mercury transformers, resulting in methylmercury concentrations in environments, remain poorly understood. Microbial mats are thick biofilms where oxic and anoxic metabolisms cooccur, providing opportunities to investigate the complexity of the microbial mercury transformations over contrasted redox conditions. Here, we conducted a genome-resolved metagenomic and metatranscriptomic analysis to identify putative activity of mercury reducers, methylators and demethylators in microbial mats strongly contaminated by mercury. Our transcriptomic results revealed the major role of rare microorganisms in mercury cycling. Mercury methylators, mainly related to Desulfobacterota, expressed a large panel of metabolic activities in sulfur, iron, nitrogen, and halogen compound transformations, extending known activities of mercury methylators under suboxic to anoxic conditions. Methylmercury detoxification processes were dissociated in the microbial mats with methylmercury cleavage being carried out by sulfide-oxidizing Thiotrichaceae and Rhodobacteraceae populations, whereas mercury reducers included members of the Verrucomicrobia, Bacteroidetes, Gammaproteobacteria, and different populations of Rhodobacteraceae. However most of the mercury reduction was potentially carried out anaerobically by sulfur- and iron-reducing Desulfuromonadaceae, revising our understanding of mercury transformers ecophysiology.Adrien VigneronPerrine CruaudJohanne AubéRémy GuyoneaudMarisol Goñi-UrrizaNature PortfolioarticleMicrobial ecologyQR100-130ENnpj Biofilms and Microbiomes, Vol 7, Iss 1, Pp 1-11 (2021)
institution DOAJ
collection DOAJ
language EN
topic Microbial ecology
QR100-130
spellingShingle Microbial ecology
QR100-130
Adrien Vigneron
Perrine Cruaud
Johanne Aubé
Rémy Guyoneaud
Marisol Goñi-Urriza
Transcriptomic evidence for versatile metabolic activities of mercury cycling microorganisms in brackish microbial mats
description Abstract Methylmercury, biomagnifying through food chains, is highly toxic for aquatic life. Its production and degradation are largely driven by microbial transformations; however, diversity and metabolic activity of mercury transformers, resulting in methylmercury concentrations in environments, remain poorly understood. Microbial mats are thick biofilms where oxic and anoxic metabolisms cooccur, providing opportunities to investigate the complexity of the microbial mercury transformations over contrasted redox conditions. Here, we conducted a genome-resolved metagenomic and metatranscriptomic analysis to identify putative activity of mercury reducers, methylators and demethylators in microbial mats strongly contaminated by mercury. Our transcriptomic results revealed the major role of rare microorganisms in mercury cycling. Mercury methylators, mainly related to Desulfobacterota, expressed a large panel of metabolic activities in sulfur, iron, nitrogen, and halogen compound transformations, extending known activities of mercury methylators under suboxic to anoxic conditions. Methylmercury detoxification processes were dissociated in the microbial mats with methylmercury cleavage being carried out by sulfide-oxidizing Thiotrichaceae and Rhodobacteraceae populations, whereas mercury reducers included members of the Verrucomicrobia, Bacteroidetes, Gammaproteobacteria, and different populations of Rhodobacteraceae. However most of the mercury reduction was potentially carried out anaerobically by sulfur- and iron-reducing Desulfuromonadaceae, revising our understanding of mercury transformers ecophysiology.
format article
author Adrien Vigneron
Perrine Cruaud
Johanne Aubé
Rémy Guyoneaud
Marisol Goñi-Urriza
author_facet Adrien Vigneron
Perrine Cruaud
Johanne Aubé
Rémy Guyoneaud
Marisol Goñi-Urriza
author_sort Adrien Vigneron
title Transcriptomic evidence for versatile metabolic activities of mercury cycling microorganisms in brackish microbial mats
title_short Transcriptomic evidence for versatile metabolic activities of mercury cycling microorganisms in brackish microbial mats
title_full Transcriptomic evidence for versatile metabolic activities of mercury cycling microorganisms in brackish microbial mats
title_fullStr Transcriptomic evidence for versatile metabolic activities of mercury cycling microorganisms in brackish microbial mats
title_full_unstemmed Transcriptomic evidence for versatile metabolic activities of mercury cycling microorganisms in brackish microbial mats
title_sort transcriptomic evidence for versatile metabolic activities of mercury cycling microorganisms in brackish microbial mats
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/5eaa0efa111f45a3b08494bf5e47553b
work_keys_str_mv AT adrienvigneron transcriptomicevidenceforversatilemetabolicactivitiesofmercurycyclingmicroorganismsinbrackishmicrobialmats
AT perrinecruaud transcriptomicevidenceforversatilemetabolicactivitiesofmercurycyclingmicroorganismsinbrackishmicrobialmats
AT johanneaube transcriptomicevidenceforversatilemetabolicactivitiesofmercurycyclingmicroorganismsinbrackishmicrobialmats
AT remyguyoneaud transcriptomicevidenceforversatilemetabolicactivitiesofmercurycyclingmicroorganismsinbrackishmicrobialmats
AT marisolgoniurriza transcriptomicevidenceforversatilemetabolicactivitiesofmercurycyclingmicroorganismsinbrackishmicrobialmats
_version_ 1718419008835813376