A mathematical model of tumor regression and recurrence after therapeutic oncogene inactivation

Abstract The targeted inactivation of individual oncogenes can elicit regression of cancers through a phenomenon called oncogene addiction. Oncogene addiction is mediated by cell-autonomous and immune-dependent mechanisms. Therapeutic resistance to oncogene inactivation leads to recurrence but can b...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Sharon S. Hori, Ling Tong, Srividya Swaminathan, Mariola Liebersbach, Jingjing Wang, Sanjiv S. Gambhir, Dean W. Felsher
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/5eaa4c551c6b436ebaa97bfaaabc2d0e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:5eaa4c551c6b436ebaa97bfaaabc2d0e
record_format dspace
spelling oai:doaj.org-article:5eaa4c551c6b436ebaa97bfaaabc2d0e2021-12-02T14:12:40ZA mathematical model of tumor regression and recurrence after therapeutic oncogene inactivation10.1038/s41598-020-78947-22045-2322https://doaj.org/article/5eaa4c551c6b436ebaa97bfaaabc2d0e2021-01-01T00:00:00Zhttps://doi.org/10.1038/s41598-020-78947-2https://doaj.org/toc/2045-2322Abstract The targeted inactivation of individual oncogenes can elicit regression of cancers through a phenomenon called oncogene addiction. Oncogene addiction is mediated by cell-autonomous and immune-dependent mechanisms. Therapeutic resistance to oncogene inactivation leads to recurrence but can be counteracted by immune surveillance. Predicting the timing of resistance will provide valuable insights in developing effective cancer treatments. To provide a quantitative understanding of cancer response to oncogene inactivation, we developed a new 3-compartment mathematical model of oncogene-driven tumor growth, regression and recurrence, and validated the model using a MYC-driven transgenic mouse model of T-cell acute lymphoblastic leukemia. Our mathematical model uses imaging-based measurements of tumor burden to predict the relative number of drug-sensitive and drug-resistant cancer cells in MYC-dependent states. We show natural killer (NK) cell adoptive therapy can delay cancer recurrence by reducing the net-growth rate of drug-resistant cells. Our studies provide a novel way to evaluate combination therapy for personalized cancer treatment.Sharon S. HoriLing TongSrividya SwaminathanMariola LiebersbachJingjing WangSanjiv S. GambhirDean W. FelsherNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-14 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Sharon S. Hori
Ling Tong
Srividya Swaminathan
Mariola Liebersbach
Jingjing Wang
Sanjiv S. Gambhir
Dean W. Felsher
A mathematical model of tumor regression and recurrence after therapeutic oncogene inactivation
description Abstract The targeted inactivation of individual oncogenes can elicit regression of cancers through a phenomenon called oncogene addiction. Oncogene addiction is mediated by cell-autonomous and immune-dependent mechanisms. Therapeutic resistance to oncogene inactivation leads to recurrence but can be counteracted by immune surveillance. Predicting the timing of resistance will provide valuable insights in developing effective cancer treatments. To provide a quantitative understanding of cancer response to oncogene inactivation, we developed a new 3-compartment mathematical model of oncogene-driven tumor growth, regression and recurrence, and validated the model using a MYC-driven transgenic mouse model of T-cell acute lymphoblastic leukemia. Our mathematical model uses imaging-based measurements of tumor burden to predict the relative number of drug-sensitive and drug-resistant cancer cells in MYC-dependent states. We show natural killer (NK) cell adoptive therapy can delay cancer recurrence by reducing the net-growth rate of drug-resistant cells. Our studies provide a novel way to evaluate combination therapy for personalized cancer treatment.
format article
author Sharon S. Hori
Ling Tong
Srividya Swaminathan
Mariola Liebersbach
Jingjing Wang
Sanjiv S. Gambhir
Dean W. Felsher
author_facet Sharon S. Hori
Ling Tong
Srividya Swaminathan
Mariola Liebersbach
Jingjing Wang
Sanjiv S. Gambhir
Dean W. Felsher
author_sort Sharon S. Hori
title A mathematical model of tumor regression and recurrence after therapeutic oncogene inactivation
title_short A mathematical model of tumor regression and recurrence after therapeutic oncogene inactivation
title_full A mathematical model of tumor regression and recurrence after therapeutic oncogene inactivation
title_fullStr A mathematical model of tumor regression and recurrence after therapeutic oncogene inactivation
title_full_unstemmed A mathematical model of tumor regression and recurrence after therapeutic oncogene inactivation
title_sort mathematical model of tumor regression and recurrence after therapeutic oncogene inactivation
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/5eaa4c551c6b436ebaa97bfaaabc2d0e
work_keys_str_mv AT sharonshori amathematicalmodeloftumorregressionandrecurrenceaftertherapeuticoncogeneinactivation
AT lingtong amathematicalmodeloftumorregressionandrecurrenceaftertherapeuticoncogeneinactivation
AT srividyaswaminathan amathematicalmodeloftumorregressionandrecurrenceaftertherapeuticoncogeneinactivation
AT mariolaliebersbach amathematicalmodeloftumorregressionandrecurrenceaftertherapeuticoncogeneinactivation
AT jingjingwang amathematicalmodeloftumorregressionandrecurrenceaftertherapeuticoncogeneinactivation
AT sanjivsgambhir amathematicalmodeloftumorregressionandrecurrenceaftertherapeuticoncogeneinactivation
AT deanwfelsher amathematicalmodeloftumorregressionandrecurrenceaftertherapeuticoncogeneinactivation
AT sharonshori mathematicalmodeloftumorregressionandrecurrenceaftertherapeuticoncogeneinactivation
AT lingtong mathematicalmodeloftumorregressionandrecurrenceaftertherapeuticoncogeneinactivation
AT srividyaswaminathan mathematicalmodeloftumorregressionandrecurrenceaftertherapeuticoncogeneinactivation
AT mariolaliebersbach mathematicalmodeloftumorregressionandrecurrenceaftertherapeuticoncogeneinactivation
AT jingjingwang mathematicalmodeloftumorregressionandrecurrenceaftertherapeuticoncogeneinactivation
AT sanjivsgambhir mathematicalmodeloftumorregressionandrecurrenceaftertherapeuticoncogeneinactivation
AT deanwfelsher mathematicalmodeloftumorregressionandrecurrenceaftertherapeuticoncogeneinactivation
_version_ 1718391785018884096