Hierarchical Active Tracking Control for UAVs via Deep Reinforcement Learning
Active tracking control is essential for UAVs to perform autonomous operations in GPS-denied environments. In the active tracking task, UAVs take high-dimensional raw images as input and execute motor actions to actively follow the dynamic target. Most research focuses on three-stage methods, which...
Guardado en:
Autores principales: | Wenlong Zhao, Zhijun Meng, Kaipeng Wang, Jiahui Zhang, Shaoze Lu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5ead3f0d10e6402295ea277f5f0a9cf4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Quadrotor Autonomous Navigation in Semi-Known Environments Based on Deep Reinforcement Learning
por: Jiajun Ou, et al.
Publicado: (2021) -
UAVs in rail damage image diagnostics supported by deep-learning networks
por: Bojarczak Piotr, et al.
Publicado: (2021) -
MNNMs Integrated Control for UAV Autonomous Tracking Randomly Moving Target Based on Learning Method
por: Mingjun Li, et al.
Publicado: (2021) -
Generalized Net Model of Forest Zone Monitoring by UAVs
por: Krassimir T. Atanassov, et al.
Publicado: (2021) -
Control of an Omnidirectional UAV for Transportation and Manipulation Tasks
por: Michelangelo Nigro, et al.
Publicado: (2021)