Machine learning prediction of sleep stages in dairy cows from heart rate and muscle activity measures
Abstract Sleep is important for cow health and shows promise as a tool for assessing welfare, but methods to accurately distinguish between important sleep stages are difficult and impractical to use with cattle in typical farm environments. The objective of this study was to determine if data from...
Guardado en:
Autores principales: | Laura B. Hunter, Abdul Baten, Marie J. Haskell, Fritha M. Langford, Cheryl O’Connor, James R. Webster, Kevin Stafford |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5eae7fc7b5dc4617a3bbad15e0984628 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Machine learning approaches for the prediction of lameness in dairy cows
por: S. Shahinfar, et al.
Publicado: (2021) -
Optimism and pasture access in dairy cows
por: Andrew Crump, et al.
Publicado: (2021) -
Effect of genus and growth stage on the chemical and mineral composition of tropical grasses used to feed dairy cows
por: Arzate-Vázquez,Gerardo L, et al.
Publicado: (2016) -
Application of the Machine Vision Technology and Infrared Thermography to the Detection of Hoof Diseases in Dairy Cows: A Review
por: Pavel Kříž, et al.
Publicado: (2021) -
Comparison of machine learning methods to predict udder health status based on somatic cell counts in dairy cows
por: Tania Bobbo, et al.
Publicado: (2021)