Bypassing the Kohn-Sham equations with machine learning

Machine learning allows electronic structure calculations to access larger system sizes and, in dynamical simulations, longer time scales. Here, the authors perform such a simulation using a machine-learned density functional that avoids direct solution of the Kohn-Sham equations.

Guardado en:
Detalles Bibliográficos
Autores principales: Felix Brockherde, Leslie Vogt, Li Li, Mark E. Tuckerman, Kieron Burke, Klaus-Robert Müller
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
Q
Acceso en línea:https://doaj.org/article/5eb66063f9824f3e9aa4606612d626ee
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:5eb66063f9824f3e9aa4606612d626ee
record_format dspace
spelling oai:doaj.org-article:5eb66063f9824f3e9aa4606612d626ee2021-12-02T15:36:59ZBypassing the Kohn-Sham equations with machine learning10.1038/s41467-017-00839-32041-1723https://doaj.org/article/5eb66063f9824f3e9aa4606612d626ee2017-10-01T00:00:00Zhttps://doi.org/10.1038/s41467-017-00839-3https://doaj.org/toc/2041-1723Machine learning allows electronic structure calculations to access larger system sizes and, in dynamical simulations, longer time scales. Here, the authors perform such a simulation using a machine-learned density functional that avoids direct solution of the Kohn-Sham equations.Felix BrockherdeLeslie VogtLi LiMark E. TuckermanKieron BurkeKlaus-Robert MüllerNature PortfolioarticleScienceQENNature Communications, Vol 8, Iss 1, Pp 1-10 (2017)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Felix Brockherde
Leslie Vogt
Li Li
Mark E. Tuckerman
Kieron Burke
Klaus-Robert Müller
Bypassing the Kohn-Sham equations with machine learning
description Machine learning allows electronic structure calculations to access larger system sizes and, in dynamical simulations, longer time scales. Here, the authors perform such a simulation using a machine-learned density functional that avoids direct solution of the Kohn-Sham equations.
format article
author Felix Brockherde
Leslie Vogt
Li Li
Mark E. Tuckerman
Kieron Burke
Klaus-Robert Müller
author_facet Felix Brockherde
Leslie Vogt
Li Li
Mark E. Tuckerman
Kieron Burke
Klaus-Robert Müller
author_sort Felix Brockherde
title Bypassing the Kohn-Sham equations with machine learning
title_short Bypassing the Kohn-Sham equations with machine learning
title_full Bypassing the Kohn-Sham equations with machine learning
title_fullStr Bypassing the Kohn-Sham equations with machine learning
title_full_unstemmed Bypassing the Kohn-Sham equations with machine learning
title_sort bypassing the kohn-sham equations with machine learning
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/5eb66063f9824f3e9aa4606612d626ee
work_keys_str_mv AT felixbrockherde bypassingthekohnshamequationswithmachinelearning
AT leslievogt bypassingthekohnshamequationswithmachinelearning
AT lili bypassingthekohnshamequationswithmachinelearning
AT marketuckerman bypassingthekohnshamequationswithmachinelearning
AT kieronburke bypassingthekohnshamequationswithmachinelearning
AT klausrobertmuller bypassingthekohnshamequationswithmachinelearning
_version_ 1718386290485886976