Bypassing the Kohn-Sham equations with machine learning
Machine learning allows electronic structure calculations to access larger system sizes and, in dynamical simulations, longer time scales. Here, the authors perform such a simulation using a machine-learned density functional that avoids direct solution of the Kohn-Sham equations.
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5eb66063f9824f3e9aa4606612d626ee |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:5eb66063f9824f3e9aa4606612d626ee |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:5eb66063f9824f3e9aa4606612d626ee2021-12-02T15:36:59ZBypassing the Kohn-Sham equations with machine learning10.1038/s41467-017-00839-32041-1723https://doaj.org/article/5eb66063f9824f3e9aa4606612d626ee2017-10-01T00:00:00Zhttps://doi.org/10.1038/s41467-017-00839-3https://doaj.org/toc/2041-1723Machine learning allows electronic structure calculations to access larger system sizes and, in dynamical simulations, longer time scales. Here, the authors perform such a simulation using a machine-learned density functional that avoids direct solution of the Kohn-Sham equations.Felix BrockherdeLeslie VogtLi LiMark E. TuckermanKieron BurkeKlaus-Robert MüllerNature PortfolioarticleScienceQENNature Communications, Vol 8, Iss 1, Pp 1-10 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Felix Brockherde Leslie Vogt Li Li Mark E. Tuckerman Kieron Burke Klaus-Robert Müller Bypassing the Kohn-Sham equations with machine learning |
description |
Machine learning allows electronic structure calculations to access larger system sizes and, in dynamical simulations, longer time scales. Here, the authors perform such a simulation using a machine-learned density functional that avoids direct solution of the Kohn-Sham equations. |
format |
article |
author |
Felix Brockherde Leslie Vogt Li Li Mark E. Tuckerman Kieron Burke Klaus-Robert Müller |
author_facet |
Felix Brockherde Leslie Vogt Li Li Mark E. Tuckerman Kieron Burke Klaus-Robert Müller |
author_sort |
Felix Brockherde |
title |
Bypassing the Kohn-Sham equations with machine learning |
title_short |
Bypassing the Kohn-Sham equations with machine learning |
title_full |
Bypassing the Kohn-Sham equations with machine learning |
title_fullStr |
Bypassing the Kohn-Sham equations with machine learning |
title_full_unstemmed |
Bypassing the Kohn-Sham equations with machine learning |
title_sort |
bypassing the kohn-sham equations with machine learning |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/5eb66063f9824f3e9aa4606612d626ee |
work_keys_str_mv |
AT felixbrockherde bypassingthekohnshamequationswithmachinelearning AT leslievogt bypassingthekohnshamequationswithmachinelearning AT lili bypassingthekohnshamequationswithmachinelearning AT marketuckerman bypassingthekohnshamequationswithmachinelearning AT kieronburke bypassingthekohnshamequationswithmachinelearning AT klausrobertmuller bypassingthekohnshamequationswithmachinelearning |
_version_ |
1718386290485886976 |