Bypassing the Kohn-Sham equations with machine learning
Machine learning allows electronic structure calculations to access larger system sizes and, in dynamical simulations, longer time scales. Here, the authors perform such a simulation using a machine-learned density functional that avoids direct solution of the Kohn-Sham equations.
Guardado en:
Autores principales: | Felix Brockherde, Leslie Vogt, Li Li, Mark E. Tuckerman, Kieron Burke, Klaus-Robert Müller |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5eb66063f9824f3e9aa4606612d626ee |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A THEORETICAL ANALYSIS OF THE KOHN-SHAM AND HARTREE-FOCK ORBITALS AND THEIR USE IN THE DETERMINATION OF ELECTRONIC PROPERTIES
por: Zevallos,Jenny, et al.
Publicado: (2003) -
Tensor-structured algorithm for reduced-order scaling large-scale Kohn–Sham density functional theory calculations
por: Chih-Chuen Lin, et al.
Publicado: (2021) -
Retrospective on a decade of machine learning for chemical discovery
por: O. Anatole von Lilienfeld, et al.
Publicado: (2020) -
Broken Symmetries and Kohn’s Theorem in Graphene Cyclotron Resonance
por: Jordan Pack, et al.
Publicado: (2020) -
Pre-stimulus sham TMS facilitates target detection.
por: Felix Duecker, et al.
Publicado: (2013)