Classifying chest CT images as COVID-19 positive/negative using a convolutional neural network ensemble model and uniform experimental design method
Abstract Background To classify chest computed tomography (CT) images as positive or negative for coronavirus disease 2019 (COVID-19) quickly and accurately, researchers attempted to develop effective models by using medical images. Results A convolutional neural network (CNN) ensemble model was dev...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
BMC
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5ecac0b838334af486386455fe7e5523 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Background To classify chest computed tomography (CT) images as positive or negative for coronavirus disease 2019 (COVID-19) quickly and accurately, researchers attempted to develop effective models by using medical images. Results A convolutional neural network (CNN) ensemble model was developed for classifying chest CT images as positive or negative for COVID-19. To classify chest CT images acquired from COVID-19 patients, the proposed COVID19-CNN ensemble model combines the use of multiple trained CNN models with a majority voting strategy. The CNN models were trained to classify chest CT images by transfer learning from well-known pre-trained CNN models and by applying their algorithm hyperparameters as appropriate. The combination of algorithm hyperparameters for a pre-trained CNN model was determined by uniform experimental design. The chest CT images (405 from COVID-19 patients and 397 from healthy patients) used for training and performance testing of the COVID19-CNN ensemble model were obtained from an earlier study by Hu in 2020. Experiments showed that, the COVID19-CNN ensemble model achieved 96.7% accuracy in classifying CT images as COVID-19 positive or negative, which was superior to the accuracies obtained by the individual trained CNN models. Other performance measures (i.e., precision, recall, specificity, and F1-score) obtained bythe COVID19-CNN ensemble model were higher than those obtained by individual trained CNN models. Conclusions The COVID19-CNN ensemble model had superior accuracy and excellent capability in classifying chest CT images as COVID-19 positive or negative. |
---|