A clinically applicable deep-learning model for detecting intracranial aneurysm in computed tomography angiography images
Interpretation of Computed Tomography Angiography for intracranial aneurysm diagnosis can be time-consuming and challenging. Here, the authors present a deep-learning-based framework achieving improved performance compared to that of radiologists and expert neurosurgeons.
Guardado en:
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5ecb0208268e4d118fe4dd3dd8db1b14 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:5ecb0208268e4d118fe4dd3dd8db1b14 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:5ecb0208268e4d118fe4dd3dd8db1b142021-12-02T17:31:24ZA clinically applicable deep-learning model for detecting intracranial aneurysm in computed tomography angiography images10.1038/s41467-020-19527-w2041-1723https://doaj.org/article/5ecb0208268e4d118fe4dd3dd8db1b142020-11-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-19527-whttps://doaj.org/toc/2041-1723Interpretation of Computed Tomography Angiography for intracranial aneurysm diagnosis can be time-consuming and challenging. Here, the authors present a deep-learning-based framework achieving improved performance compared to that of radiologists and expert neurosurgeons.Zhao ShiChongchang MiaoU. Joseph SchoepfRock H. SavageDanielle M. DargisChengwei PanXue ChaiXiu Li LiShuang XiaXin ZhangYan GuYonggang ZhangBin HuWenda XuChangsheng ZhouSong LuoHao WangLi MaoKongming LiangLili WenLongjiang ZhouYizhou YuGuang Ming LuLong Jiang ZhangNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-11 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Zhao Shi Chongchang Miao U. Joseph Schoepf Rock H. Savage Danielle M. Dargis Chengwei Pan Xue Chai Xiu Li Li Shuang Xia Xin Zhang Yan Gu Yonggang Zhang Bin Hu Wenda Xu Changsheng Zhou Song Luo Hao Wang Li Mao Kongming Liang Lili Wen Longjiang Zhou Yizhou Yu Guang Ming Lu Long Jiang Zhang A clinically applicable deep-learning model for detecting intracranial aneurysm in computed tomography angiography images |
description |
Interpretation of Computed Tomography Angiography for intracranial aneurysm diagnosis can be time-consuming and challenging. Here, the authors present a deep-learning-based framework achieving improved performance compared to that of radiologists and expert neurosurgeons. |
format |
article |
author |
Zhao Shi Chongchang Miao U. Joseph Schoepf Rock H. Savage Danielle M. Dargis Chengwei Pan Xue Chai Xiu Li Li Shuang Xia Xin Zhang Yan Gu Yonggang Zhang Bin Hu Wenda Xu Changsheng Zhou Song Luo Hao Wang Li Mao Kongming Liang Lili Wen Longjiang Zhou Yizhou Yu Guang Ming Lu Long Jiang Zhang |
author_facet |
Zhao Shi Chongchang Miao U. Joseph Schoepf Rock H. Savage Danielle M. Dargis Chengwei Pan Xue Chai Xiu Li Li Shuang Xia Xin Zhang Yan Gu Yonggang Zhang Bin Hu Wenda Xu Changsheng Zhou Song Luo Hao Wang Li Mao Kongming Liang Lili Wen Longjiang Zhou Yizhou Yu Guang Ming Lu Long Jiang Zhang |
author_sort |
Zhao Shi |
title |
A clinically applicable deep-learning model for detecting intracranial aneurysm in computed tomography angiography images |
title_short |
A clinically applicable deep-learning model for detecting intracranial aneurysm in computed tomography angiography images |
title_full |
A clinically applicable deep-learning model for detecting intracranial aneurysm in computed tomography angiography images |
title_fullStr |
A clinically applicable deep-learning model for detecting intracranial aneurysm in computed tomography angiography images |
title_full_unstemmed |
A clinically applicable deep-learning model for detecting intracranial aneurysm in computed tomography angiography images |
title_sort |
clinically applicable deep-learning model for detecting intracranial aneurysm in computed tomography angiography images |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/5ecb0208268e4d118fe4dd3dd8db1b14 |
work_keys_str_mv |
AT zhaoshi aclinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages AT chongchangmiao aclinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages AT ujosephschoepf aclinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages AT rockhsavage aclinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages AT daniellemdargis aclinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages AT chengweipan aclinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages AT xuechai aclinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages AT xiulili aclinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages AT shuangxia aclinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages AT xinzhang aclinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages AT yangu aclinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages AT yonggangzhang aclinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages AT binhu aclinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages AT wendaxu aclinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages AT changshengzhou aclinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages AT songluo aclinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages AT haowang aclinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages AT limao aclinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages AT kongmingliang aclinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages AT liliwen aclinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages AT longjiangzhou aclinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages AT yizhouyu aclinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages AT guangminglu aclinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages AT longjiangzhang aclinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages AT zhaoshi clinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages AT chongchangmiao clinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages AT ujosephschoepf clinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages AT rockhsavage clinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages AT daniellemdargis clinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages AT chengweipan clinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages AT xuechai clinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages AT xiulili clinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages AT shuangxia clinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages AT xinzhang clinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages AT yangu clinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages AT yonggangzhang clinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages AT binhu clinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages AT wendaxu clinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages AT changshengzhou clinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages AT songluo clinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages AT haowang clinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages AT limao clinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages AT kongmingliang clinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages AT liliwen clinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages AT longjiangzhou clinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages AT yizhouyu clinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages AT guangminglu clinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages AT longjiangzhang clinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages |
_version_ |
1718380614395101184 |