A clinically applicable deep-learning model for detecting intracranial aneurysm in computed tomography angiography images

Interpretation of Computed Tomography Angiography for intracranial aneurysm diagnosis can be time-consuming and challenging. Here, the authors present a deep-learning-based framework achieving improved performance compared to that of radiologists and expert neurosurgeons.

Guardado en:
Detalles Bibliográficos
Autores principales: Zhao Shi, Chongchang Miao, U. Joseph Schoepf, Rock H. Savage, Danielle M. Dargis, Chengwei Pan, Xue Chai, Xiu Li Li, Shuang Xia, Xin Zhang, Yan Gu, Yonggang Zhang, Bin Hu, Wenda Xu, Changsheng Zhou, Song Luo, Hao Wang, Li Mao, Kongming Liang, Lili Wen, Longjiang Zhou, Yizhou Yu, Guang Ming Lu, Long Jiang Zhang
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/5ecb0208268e4d118fe4dd3dd8db1b14
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:5ecb0208268e4d118fe4dd3dd8db1b14
record_format dspace
spelling oai:doaj.org-article:5ecb0208268e4d118fe4dd3dd8db1b142021-12-02T17:31:24ZA clinically applicable deep-learning model for detecting intracranial aneurysm in computed tomography angiography images10.1038/s41467-020-19527-w2041-1723https://doaj.org/article/5ecb0208268e4d118fe4dd3dd8db1b142020-11-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-19527-whttps://doaj.org/toc/2041-1723Interpretation of Computed Tomography Angiography for intracranial aneurysm diagnosis can be time-consuming and challenging. Here, the authors present a deep-learning-based framework achieving improved performance compared to that of radiologists and expert neurosurgeons.Zhao ShiChongchang MiaoU. Joseph SchoepfRock H. SavageDanielle M. DargisChengwei PanXue ChaiXiu Li LiShuang XiaXin ZhangYan GuYonggang ZhangBin HuWenda XuChangsheng ZhouSong LuoHao WangLi MaoKongming LiangLili WenLongjiang ZhouYizhou YuGuang Ming LuLong Jiang ZhangNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-11 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Zhao Shi
Chongchang Miao
U. Joseph Schoepf
Rock H. Savage
Danielle M. Dargis
Chengwei Pan
Xue Chai
Xiu Li Li
Shuang Xia
Xin Zhang
Yan Gu
Yonggang Zhang
Bin Hu
Wenda Xu
Changsheng Zhou
Song Luo
Hao Wang
Li Mao
Kongming Liang
Lili Wen
Longjiang Zhou
Yizhou Yu
Guang Ming Lu
Long Jiang Zhang
A clinically applicable deep-learning model for detecting intracranial aneurysm in computed tomography angiography images
description Interpretation of Computed Tomography Angiography for intracranial aneurysm diagnosis can be time-consuming and challenging. Here, the authors present a deep-learning-based framework achieving improved performance compared to that of radiologists and expert neurosurgeons.
format article
author Zhao Shi
Chongchang Miao
U. Joseph Schoepf
Rock H. Savage
Danielle M. Dargis
Chengwei Pan
Xue Chai
Xiu Li Li
Shuang Xia
Xin Zhang
Yan Gu
Yonggang Zhang
Bin Hu
Wenda Xu
Changsheng Zhou
Song Luo
Hao Wang
Li Mao
Kongming Liang
Lili Wen
Longjiang Zhou
Yizhou Yu
Guang Ming Lu
Long Jiang Zhang
author_facet Zhao Shi
Chongchang Miao
U. Joseph Schoepf
Rock H. Savage
Danielle M. Dargis
Chengwei Pan
Xue Chai
Xiu Li Li
Shuang Xia
Xin Zhang
Yan Gu
Yonggang Zhang
Bin Hu
Wenda Xu
Changsheng Zhou
Song Luo
Hao Wang
Li Mao
Kongming Liang
Lili Wen
Longjiang Zhou
Yizhou Yu
Guang Ming Lu
Long Jiang Zhang
author_sort Zhao Shi
title A clinically applicable deep-learning model for detecting intracranial aneurysm in computed tomography angiography images
title_short A clinically applicable deep-learning model for detecting intracranial aneurysm in computed tomography angiography images
title_full A clinically applicable deep-learning model for detecting intracranial aneurysm in computed tomography angiography images
title_fullStr A clinically applicable deep-learning model for detecting intracranial aneurysm in computed tomography angiography images
title_full_unstemmed A clinically applicable deep-learning model for detecting intracranial aneurysm in computed tomography angiography images
title_sort clinically applicable deep-learning model for detecting intracranial aneurysm in computed tomography angiography images
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/5ecb0208268e4d118fe4dd3dd8db1b14
work_keys_str_mv AT zhaoshi aclinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages
AT chongchangmiao aclinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages
AT ujosephschoepf aclinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages
AT rockhsavage aclinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages
AT daniellemdargis aclinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages
AT chengweipan aclinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages
AT xuechai aclinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages
AT xiulili aclinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages
AT shuangxia aclinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages
AT xinzhang aclinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages
AT yangu aclinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages
AT yonggangzhang aclinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages
AT binhu aclinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages
AT wendaxu aclinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages
AT changshengzhou aclinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages
AT songluo aclinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages
AT haowang aclinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages
AT limao aclinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages
AT kongmingliang aclinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages
AT liliwen aclinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages
AT longjiangzhou aclinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages
AT yizhouyu aclinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages
AT guangminglu aclinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages
AT longjiangzhang aclinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages
AT zhaoshi clinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages
AT chongchangmiao clinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages
AT ujosephschoepf clinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages
AT rockhsavage clinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages
AT daniellemdargis clinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages
AT chengweipan clinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages
AT xuechai clinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages
AT xiulili clinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages
AT shuangxia clinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages
AT xinzhang clinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages
AT yangu clinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages
AT yonggangzhang clinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages
AT binhu clinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages
AT wendaxu clinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages
AT changshengzhou clinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages
AT songluo clinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages
AT haowang clinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages
AT limao clinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages
AT kongmingliang clinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages
AT liliwen clinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages
AT longjiangzhou clinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages
AT yizhouyu clinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages
AT guangminglu clinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages
AT longjiangzhang clinicallyapplicabledeeplearningmodelfordetectingintracranialaneurysmincomputedtomographyangiographyimages
_version_ 1718380614395101184