A clinically applicable deep-learning model for detecting intracranial aneurysm in computed tomography angiography images
Interpretation of Computed Tomography Angiography for intracranial aneurysm diagnosis can be time-consuming and challenging. Here, the authors present a deep-learning-based framework achieving improved performance compared to that of radiologists and expert neurosurgeons.
Guardado en:
Autores principales: | Zhao Shi, Chongchang Miao, U. Joseph Schoepf, Rock H. Savage, Danielle M. Dargis, Chengwei Pan, Xue Chai, Xiu Li Li, Shuang Xia, Xin Zhang, Yan Gu, Yonggang Zhang, Bin Hu, Wenda Xu, Changsheng Zhou, Song Luo, Hao Wang, Li Mao, Kongming Liang, Lili Wen, Longjiang Zhou, Yizhou Yu, Guang Ming Lu, Long Jiang Zhang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5ecb0208268e4d118fe4dd3dd8db1b14 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Underlying mechanism of hemodynamics and intracranial aneurysm
por: Haishuang Tang, et al.
Publicado: (2021) -
Alterations of gut microbiota contribute to the progression of unruptured intracranial aneurysms
por: Hao Li, et al.
Publicado: (2020) -
Association of wall shear stress with intracranial aneurysm rupture: systematic review and meta-analysis
por: Geng Zhou, et al.
Publicado: (2017) -
Late-onset Pompe disease with complicated intracranial aneurysm: a Chinese case report
por: Zhang B, et al.
Publicado: (2016) -
CircRNA_0079586 and circRNA_RanGAP1 are involved in the pathogenesis of intracranial aneurysms rupture by regulating the expression of MPO
por: Zhuang Zhang, et al.
Publicado: (2021)