Machine Learning for the Relationship of High-Energy Electron Flux between GEO and MEO with Application to Missing Values Imputation for Beidou MEO Data
We consider the problem of building the relationship of high-energy electron flux between Geostationary Earth Orbit (GEO) and Medium Earth Orbit (MEO). A time-series decomposition technique is first applied to the original data, resulting in trend and detrended part for both GEO and MEO data. Then w...
Guardado en:
Autores principales: | Cui Ruifei, Jiang Yu, Tian Chao, Zhang Riwei, Hu Sihui, Li Jiyun |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5ee8cd57e0584634ba0c05f2cc48a084 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Determination of 3-MeO-PCP in human blood and urine in a fatal intoxication case, with a specific focus on metabolites identification
por: Nadia Arbouche, et al.
Publicado: (2021) -
Missing Value Imputation of Time-Series Air-Quality Data via Deep Neural Networks
por: Taesung Kim, et al.
Publicado: (2021) -
Contextual Imputation With Missing Sequence of EEG Signals Using Generative Adversarial Networks
por: Woonghee Lee, et al.
Publicado: (2021) -
Control of Magnetopause Flux Rope Topology by Non-local Reconnection
por: Lars Mejnertsen, et al.
Publicado: (2021) -
Medium Attribute of Geographical Environment in Geostrategic Intersection Area and Its Geo-Setting Effect—Taking Ukraine as an Example
por: Ye Shuai, et al.
Publicado: (2021)