Comprehensive analytical and empirical evaluation of genomic prediction across diverse accessions in maize

Abstract Efficiently exploiting natural genetic diversity captured by accessions stored in genebanks is crucial to genetic improvement of major crops. Selecting accessions of interest from genebanks has traditionally required information from extensive and expensive evaluation; however, low‐cost gen...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Matthew J. Dzievit, Tingting Guo, Xianran Li, Jianming Yu
Formato: article
Lenguaje:EN
Publicado: Wiley 2021
Materias:
Acceso en línea:https://doaj.org/article/5ef1082fbf6742f1a6dd0095795c9824
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:5ef1082fbf6742f1a6dd0095795c9824
record_format dspace
spelling oai:doaj.org-article:5ef1082fbf6742f1a6dd0095795c98242021-12-05T07:50:12ZComprehensive analytical and empirical evaluation of genomic prediction across diverse accessions in maize1940-337210.1002/tpg2.20160https://doaj.org/article/5ef1082fbf6742f1a6dd0095795c98242021-11-01T00:00:00Zhttps://doi.org/10.1002/tpg2.20160https://doaj.org/toc/1940-3372Abstract Efficiently exploiting natural genetic diversity captured by accessions stored in genebanks is crucial to genetic improvement of major crops. Selecting accessions of interest from genebanks has traditionally required information from extensive and expensive evaluation; however, low‐cost genotyping combined with genomic prediction have enabled us to generate predicted genetic merits for the entire set with targeted phenotypic evaluation of representative subsets. To explore this general approach, analytical assessment and empirical validation of the maize (Zea mays L.) association population (MAP) as a training population were conducted in the present study. Cross‐validation within the MAP revealed mostly modest to strong predictive ability for 36 traits, generally in parallel with the square root of heritability. The MAP was then used to train the prediction models to generate genomic estimated breeding values (GEBVs) for the Ames Diversity Panel. Empirical validation conducted for nine traits across two validation populations confirmed the accuracy level indicated by the cross‐validation of the training population. An upper bound for reliability (U value) was calculated for the accessions in the prediction population using genotypic data. The group of accessions with high U values generally had high predictive ability, even though the range of observed trait values was similar to the group of accessions with low U values. Our comprehensive analysis validated the general approach of turbocharging genebanks with genomics and genomic prediction. In addition, breeders and researchers can consider both GEBVs and U values to balance the needs of improving specific traits and broadening genetic diversity when selecting accessions from genebanks.Matthew J. DzievitTingting GuoXianran LiJianming YuWileyarticlePlant cultureSB1-1110GeneticsQH426-470ENThe Plant Genome, Vol 14, Iss 3, Pp n/a-n/a (2021)
institution DOAJ
collection DOAJ
language EN
topic Plant culture
SB1-1110
Genetics
QH426-470
spellingShingle Plant culture
SB1-1110
Genetics
QH426-470
Matthew J. Dzievit
Tingting Guo
Xianran Li
Jianming Yu
Comprehensive analytical and empirical evaluation of genomic prediction across diverse accessions in maize
description Abstract Efficiently exploiting natural genetic diversity captured by accessions stored in genebanks is crucial to genetic improvement of major crops. Selecting accessions of interest from genebanks has traditionally required information from extensive and expensive evaluation; however, low‐cost genotyping combined with genomic prediction have enabled us to generate predicted genetic merits for the entire set with targeted phenotypic evaluation of representative subsets. To explore this general approach, analytical assessment and empirical validation of the maize (Zea mays L.) association population (MAP) as a training population were conducted in the present study. Cross‐validation within the MAP revealed mostly modest to strong predictive ability for 36 traits, generally in parallel with the square root of heritability. The MAP was then used to train the prediction models to generate genomic estimated breeding values (GEBVs) for the Ames Diversity Panel. Empirical validation conducted for nine traits across two validation populations confirmed the accuracy level indicated by the cross‐validation of the training population. An upper bound for reliability (U value) was calculated for the accessions in the prediction population using genotypic data. The group of accessions with high U values generally had high predictive ability, even though the range of observed trait values was similar to the group of accessions with low U values. Our comprehensive analysis validated the general approach of turbocharging genebanks with genomics and genomic prediction. In addition, breeders and researchers can consider both GEBVs and U values to balance the needs of improving specific traits and broadening genetic diversity when selecting accessions from genebanks.
format article
author Matthew J. Dzievit
Tingting Guo
Xianran Li
Jianming Yu
author_facet Matthew J. Dzievit
Tingting Guo
Xianran Li
Jianming Yu
author_sort Matthew J. Dzievit
title Comprehensive analytical and empirical evaluation of genomic prediction across diverse accessions in maize
title_short Comprehensive analytical and empirical evaluation of genomic prediction across diverse accessions in maize
title_full Comprehensive analytical and empirical evaluation of genomic prediction across diverse accessions in maize
title_fullStr Comprehensive analytical and empirical evaluation of genomic prediction across diverse accessions in maize
title_full_unstemmed Comprehensive analytical and empirical evaluation of genomic prediction across diverse accessions in maize
title_sort comprehensive analytical and empirical evaluation of genomic prediction across diverse accessions in maize
publisher Wiley
publishDate 2021
url https://doaj.org/article/5ef1082fbf6742f1a6dd0095795c9824
work_keys_str_mv AT matthewjdzievit comprehensiveanalyticalandempiricalevaluationofgenomicpredictionacrossdiverseaccessionsinmaize
AT tingtingguo comprehensiveanalyticalandempiricalevaluationofgenomicpredictionacrossdiverseaccessionsinmaize
AT xianranli comprehensiveanalyticalandempiricalevaluationofgenomicpredictionacrossdiverseaccessionsinmaize
AT jianmingyu comprehensiveanalyticalandempiricalevaluationofgenomicpredictionacrossdiverseaccessionsinmaize
_version_ 1718372557570179072