Comprehensive analytical and empirical evaluation of genomic prediction across diverse accessions in maize
Abstract Efficiently exploiting natural genetic diversity captured by accessions stored in genebanks is crucial to genetic improvement of major crops. Selecting accessions of interest from genebanks has traditionally required information from extensive and expensive evaluation; however, low‐cost gen...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Wiley
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5ef1082fbf6742f1a6dd0095795c9824 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:5ef1082fbf6742f1a6dd0095795c9824 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:5ef1082fbf6742f1a6dd0095795c98242021-12-05T07:50:12ZComprehensive analytical and empirical evaluation of genomic prediction across diverse accessions in maize1940-337210.1002/tpg2.20160https://doaj.org/article/5ef1082fbf6742f1a6dd0095795c98242021-11-01T00:00:00Zhttps://doi.org/10.1002/tpg2.20160https://doaj.org/toc/1940-3372Abstract Efficiently exploiting natural genetic diversity captured by accessions stored in genebanks is crucial to genetic improvement of major crops. Selecting accessions of interest from genebanks has traditionally required information from extensive and expensive evaluation; however, low‐cost genotyping combined with genomic prediction have enabled us to generate predicted genetic merits for the entire set with targeted phenotypic evaluation of representative subsets. To explore this general approach, analytical assessment and empirical validation of the maize (Zea mays L.) association population (MAP) as a training population were conducted in the present study. Cross‐validation within the MAP revealed mostly modest to strong predictive ability for 36 traits, generally in parallel with the square root of heritability. The MAP was then used to train the prediction models to generate genomic estimated breeding values (GEBVs) for the Ames Diversity Panel. Empirical validation conducted for nine traits across two validation populations confirmed the accuracy level indicated by the cross‐validation of the training population. An upper bound for reliability (U value) was calculated for the accessions in the prediction population using genotypic data. The group of accessions with high U values generally had high predictive ability, even though the range of observed trait values was similar to the group of accessions with low U values. Our comprehensive analysis validated the general approach of turbocharging genebanks with genomics and genomic prediction. In addition, breeders and researchers can consider both GEBVs and U values to balance the needs of improving specific traits and broadening genetic diversity when selecting accessions from genebanks.Matthew J. DzievitTingting GuoXianran LiJianming YuWileyarticlePlant cultureSB1-1110GeneticsQH426-470ENThe Plant Genome, Vol 14, Iss 3, Pp n/a-n/a (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Plant culture SB1-1110 Genetics QH426-470 |
spellingShingle |
Plant culture SB1-1110 Genetics QH426-470 Matthew J. Dzievit Tingting Guo Xianran Li Jianming Yu Comprehensive analytical and empirical evaluation of genomic prediction across diverse accessions in maize |
description |
Abstract Efficiently exploiting natural genetic diversity captured by accessions stored in genebanks is crucial to genetic improvement of major crops. Selecting accessions of interest from genebanks has traditionally required information from extensive and expensive evaluation; however, low‐cost genotyping combined with genomic prediction have enabled us to generate predicted genetic merits for the entire set with targeted phenotypic evaluation of representative subsets. To explore this general approach, analytical assessment and empirical validation of the maize (Zea mays L.) association population (MAP) as a training population were conducted in the present study. Cross‐validation within the MAP revealed mostly modest to strong predictive ability for 36 traits, generally in parallel with the square root of heritability. The MAP was then used to train the prediction models to generate genomic estimated breeding values (GEBVs) for the Ames Diversity Panel. Empirical validation conducted for nine traits across two validation populations confirmed the accuracy level indicated by the cross‐validation of the training population. An upper bound for reliability (U value) was calculated for the accessions in the prediction population using genotypic data. The group of accessions with high U values generally had high predictive ability, even though the range of observed trait values was similar to the group of accessions with low U values. Our comprehensive analysis validated the general approach of turbocharging genebanks with genomics and genomic prediction. In addition, breeders and researchers can consider both GEBVs and U values to balance the needs of improving specific traits and broadening genetic diversity when selecting accessions from genebanks. |
format |
article |
author |
Matthew J. Dzievit Tingting Guo Xianran Li Jianming Yu |
author_facet |
Matthew J. Dzievit Tingting Guo Xianran Li Jianming Yu |
author_sort |
Matthew J. Dzievit |
title |
Comprehensive analytical and empirical evaluation of genomic prediction across diverse accessions in maize |
title_short |
Comprehensive analytical and empirical evaluation of genomic prediction across diverse accessions in maize |
title_full |
Comprehensive analytical and empirical evaluation of genomic prediction across diverse accessions in maize |
title_fullStr |
Comprehensive analytical and empirical evaluation of genomic prediction across diverse accessions in maize |
title_full_unstemmed |
Comprehensive analytical and empirical evaluation of genomic prediction across diverse accessions in maize |
title_sort |
comprehensive analytical and empirical evaluation of genomic prediction across diverse accessions in maize |
publisher |
Wiley |
publishDate |
2021 |
url |
https://doaj.org/article/5ef1082fbf6742f1a6dd0095795c9824 |
work_keys_str_mv |
AT matthewjdzievit comprehensiveanalyticalandempiricalevaluationofgenomicpredictionacrossdiverseaccessionsinmaize AT tingtingguo comprehensiveanalyticalandempiricalevaluationofgenomicpredictionacrossdiverseaccessionsinmaize AT xianranli comprehensiveanalyticalandempiricalevaluationofgenomicpredictionacrossdiverseaccessionsinmaize AT jianmingyu comprehensiveanalyticalandempiricalevaluationofgenomicpredictionacrossdiverseaccessionsinmaize |
_version_ |
1718372557570179072 |